A comparison of degradation rate bone scaffold morphology between computer simulation and experimental approach


  • Akbar Teguh Prakoso Universitas Sriwijaya
  • Ardiyansyah Syahrom Universiti Teknologi Malaysia
  • Mohd Ayub Sulong Universiti Teknologi Malaysia
  • Amir Putra Md. Saad Universiti Teknologi Malaysia
  • Irsyadi Yani Universitas Sriwijaya
  • Jimmy Deswidawansyah Nasution Universitas Sriwijaya
  • Hasan Basri Universitas Sriwijaya




Degradation rate, Bone scaffold, Morphology, Image processing


The objective of this research is to validate the behavior of degradation rate within porous magnesium scaffolds in terms of morphological which includes weight loss after degradation by means of micro-computed tomography (µCT) based on image processing. The main contribution of this work is finding another method to determine morphology based on computer simulation. In the present study, bone scaffold specimens made of pure magnesium that was prepared with three different percentages of porosities 30%, 41%, and 55%. There were immersed and subjected to the dynamic flow rate of simulated body fluid for periods of 24, 48 and 72 hours. One sample of each specimen was scanned by µCT with a resolution of 17 µm. The cross-sections of raw data were superimposed by using MIMICS software to form a 3D reconstruction of the samples after degradation. The degradation morphology was collected from the simulation and showed good agreement with the experimental results by only less than 2%. Based on the simulation results, it is possible to give a recommendation for the alternative way in the morphological study of orthopedic applications.


F. J. O’Brien, 2011. Biomaterials and scaffolds for tissue engineering. Material Today 14(3), 88–95.

G. Ciapetti, L. Ambrosio, G. Marletta, N. Baldini, and A. Giunti, 2006. Humanbone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials 27, 6150–6160.

V. Guarino, F. Causa, and L. Ambrosio, 2007. Bioactive scaffolds for bone and ligament tissue. Expert Review of Medical Devices 4(3), 405–418.

L. Savarino, N. Baldini, M. Greco, O. Capitani, S. Pinna, S. Valentini, B. Lombardo, M.T. Esposito, L. Pastore, L. Ambrosio, S. Battista, F. Causa, S. Zeppetelli, V. Guarino, P.A. Netti, 2007. The performance of poly-ɛ-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28(20), 3101–3109.

Amir Putra Md. Saad, Noor Jasmawati, Muhamad Noor Harun, Mohammed Rafiq Abdul Kadir, Hadi Nur, Hendra Hermawan, and Ardiyansyah Syahrom, 2016. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corrosion Science 112, 1-12.

Amir Putra Md. Saad, Rabiatul Adibah Abdul Rahim, Muhamad Noor Harun, Hasan Basri, Jaafar Abdullah, Mohammed Rafiq Abdul Kadir, and Ardiyansyah Syahrom, 2017. The Influence of flowrates on the dynamic degradation behavior of porous magnesium under a simulated environment of human cancellous bone. Materials & Design 122, 268-279.

A. C. Jones, Bruce Milthorpe, Holger Averdunk, Ajay Limaye, Tim J. Senden, Arthur Sakellariou, Adrian P. Sheppard, Rob M. Sok, Mark A. Knackstedt, Arthur Brandwood, Dennis Rohner, Dietmar W. Hutmacher, 2004. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25(20), 4947–4954.

R. Muller, T. Hildebrand, and P. Ruegsegger, 1994. Non-invasive bone biopsy: a new method to analyze and display the three-dimensional structure of trabecular bone. Physics in Medicine and Biology 39(1), 145-164.

R. Muller, M. Hahn, M. Vogel, G. Delling, and P. Ruegsegger, 1996. Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18(3), 215-220.

J. R. Vetsch, R. Müller, and S. Hofmann, 2015. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. Journal of Tissue Engineering and Regenerative Medicine 9(8), 903–917.

G. H. Van Lenthe, H. Hagenmüller, M. Bohner, S. J. Hollister, L. Meinel, and R. Müller, 2007. Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28(15), 2479–2490.

L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, 2014. Scaffold design for bone regeneration. Journal of Nanoscience and Nanotechnology 14(1), 15–56.

K. G. Prashanth, K. Zhuravleva, I. Okulov, M. Calin, J. Eckert, and A. Gebert, 2016. Mechanical and corrosion behavior of new generation Ti-45Nb porous alloys implant devices. Technologies 4(33), 1-12.

M. Zhao, P. Schmutz, S. Brunner, M. Liu, G. Song, and A. Atrens, 2009. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corrosion Science 51(6), 1277–1292.

A. Shahini, M. Yazdimamaghani, K. J. Walker, M. A. Eastman, H.H. Marbini, B. J. Smith, J. L. Ricci, S.V. Madihally, D. Vashaee, and L. Tayebi, 2014. 3D conductive nanocomposite scaffold for bone tissue engineering. International Journal of Nanomedicine 9, 167–181.

A. Papadimitropoulos, M. Mastrogiacomo, F. Peyrin, E. Molinari, V.S. Komlev, F. Rustichelli, and R. Cancedda, 2007. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate Scaffold: An X-ray computed microtomography study. Biotechnology and Bioengineering 98(1), 271–281.

Martin Baiker, Thomas J. A. Snoeks, Eric L. Kaijzel, I. Que, J. Dijkstra, Boudewijn P. F. Lelieveldt, Clemens W. G. M. Löwik, 2012. Automated bone volume and thickness measurements in small animal whole-body MicroCT data. Molecular Imaging and Biology 14(4), 420–430.

P.J. Reynisson, M. Scali, E. Smistad, E.F. Hofstad, H.O. Leira, F. Lindseth, Toril A.N. Hernes, T. Amundsen, H. Sorger, and T. Langø, 2015. Airway segmentation and centerline extraction from thoracic CT - Comparison of a new method to state of the art commercialized methods. PLoS One 10(12), 1–20.

Y. Zhang, Z. He, S. Fan, K. He, and C. Li, 2008. Automatic thresholding of micro-CT trabecular bone images. BMEI '08 Proceedings of the 2008 International Conference on Biomedical Engineering and Informatics 2, 23-27.

M. Doube, M.M. Kłosowski, I.A. Carreras, F.P. Cordelières, R.P. Dougherty, J. S. Jackson, B. Schmid, J.R. Hutchinson, and S.J. Shefelbine, 2010. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079.

C. Science, 2017. Automatic thresholding from the gradients of region boundaries. Journal of Microscopy 265(2), 185–195.

R. Geesala, N. Bar, N. R. Dhoke, P. Basak, and A. Das, 2016. Data on bone marrow stem cells delivery using porous polymer scaffold. Data in Brief 6, 221–228.

M. A. Alkubeyyer, H. Al-Khodair, and S. Alsultan, 2013. Comparisons of interactive and multiple automated methods for mammographic density index quantification. Poster presented at European Congress of Radiology, ECR 2013, C-0359, 1-11.

E. Sales, I. Lima, J.T. de Assis, W. Go´mez, W. C. A. Pereira, and R. T. Lopes, 2012. Bone quality analysis using X-ray microtomography and microfluorescence. Applied Radiation and Isotopes 70(7), 1272–1276.

W. Van Aarle, K. J. Batenburg, and J. Sijbers, 2011. Optimal threshold selection for segmentation of dense homogeneous objects in tomographic reconstructions. IEEE Transactions on Medical Imaging 30(4),980-989.

P. Sharma, A. Joshua, and M. Singh, 2013. A novel approach towards x-ray bone image segmentation using discrete step algorithm. International Journal of Emerging Trends & Technology in Computer Science 2(5), 191–195.

M. Rekha and A. Meera, 2013. Tumor detection using K-Mean clustering algorithm method. International Journal of Scientific & Engineering Research 4(8), 2226-2230.

E. Descamps, A. Sochacka, B. De Kegel, D. Van Loo, L. Van Hoorebeke, and D. Adriaens, 2014. Soft tissue discrimination with contrast agents using micro-CT scanning. Belgian Journal of Zoology 144(1), 20–40.

Z. Larimore, S. Jensen, P. Parsons, B. Good, K. Smith, and M. Mirotznik, 2017. Use of space-filling curves for additive manufacturing of three-dimensionally varying graded dielectric structures using fused deposition modeling. Additive Manufacturing 15, 48-56.

T. A. Alam, Q. L. Pham, V. I. Sikavitsas, D. V. Papavassiliou, R. L. Shambaugh, and R. S. Voronov, 2016. Image-based modeling: A novel tool for realistic simulations of artificial bone cultures. Technology 4(4), 229-233.

M. A. Sulong, V. Mathier, T. Fiedler, I. V. Belova, and G. E. Murch, 2014. Compressive properties of Corevo® foam under uni-axial loading based on the experimental and numerical analysis. Applied Mechanics and Materials 597, 121–126.

N. Ishida Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P. J. Uggowitzer, and A. Atrens, 2013. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corrosion Science 75, 354–366.

T. Kokubo, H. Takadama, 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915.