Hyperthermia therapy monitoring with guidance of B-Mode ultrasound: Study on rat breast tumor tissue


  • Maizatul Nadwa Che Aziz Department of Clinical Science Universiti Teknologi Malaysia
  • Maheza Irna Mohamad Salim Head of Department (Clinical Science) Universiti Teknologi Malaysia
  • Noraida Abd Manaf Department of Clinical Science Universiti Teknologi Malaysia
  • Asnida Abd Wahab Department of Clinical Science Universiti Teknologi Malaysia
  • Lai Khin Wee University of Malaya
  • Hum Yan Chai Universiti Tunku Abdul Rahman




Local hyperthermia, Cancer Therapy, B-Mode Ultrasound,


Local hyperthermia treatment for cáncer therapy has shown increasing interest in conjunction to the other existence treatment as such chemotherapy, clinical surgery and radiation. B-Mode ultrasound have shown great potential for local hyperthermia, as it is nonionizing, convenient, and has relatively simple signal processing and it offers good spatial resolution.The aim of this study is to compare the most optimum B-Mode ultrasound parameters in normal and pathological tissue. The subjects were dissected and exposed to hyperthermia at 37◦C, 40◦C, 45◦C, 50◦C and 55◦C. Result shows, for mean grey scale in normal and pathological tissue, 37◦C and 40◦C was optimum temperature with correspond values of 188.08 and 199.26 meanwhile for pixel deviation analysis, at 45◦C and 55◦C the best temperature is observed in  both tissue with pixel deviation of 57.27 and 57.25. Additionally, it is proven with accuracy of testing to validation data using Artificial Neural Network, ANN, about 88.89% and 81.25% was achieved.


van der Zee, J. (2002). Heating the patient: a promising approach? Annals of Oncology, 13(8) ,1173–1184.

Dewhirst, M. W., Prosnitz, L., Thrall, D., Prescott, D., Cleff, S., Charles, C., Macfall, J., Rosner, G., Samulski, T., Gillette, E., LaRue, S. (1997). Hyperthermic treatment of malignant diseases: Current status and a view toward the future. Seminars in Oncology, 24(6), 616–625.

Overgaard, J., Gonzales, D., Hulshof, M., Arcangeli, G., Dahl, O., Mella, O., Bentzen, S. (1996). Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicenter randomized trial by the European Society for Hyperthermic Oncology. International Journal of Hyperthermia, 12(1.), 3–20.

Vernon, C. C., Hand, J. W., Field, S. B., Machin, D., Whaley, J. B., van der Zee, J., van Putten, W. L., van Rhoon, G. C., van Dijk, J. D., González González, D., Liu, F. F., Goodman, P., Sherar, M. (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from 5 randomized controlled trials. International Collaborative Hyperthermia Group. International Journal of Radiation Oncology, Biology and Physic, 35(4), 731–744.

Sneed, P. K., Stauffer, P. R., McDermott, M. W., Diederich, C. J., Lamborn, K. R., Prados, M. D., Chang, S., Weaver, K. A., Spry, L., Malec, M. K., Lamb, S. A., Voss, B., Davis, R. L., Wara, W. M., Larson, D. A., Phillips, T. L., Gutin, P. H. (1998). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/– hyperthermia for glioblastoma multiforme. International Journal of Radiation Oncology, Biology and Physic, 40(2), 287– 295.

Moffat, F. L., Rotstein, L. E., Calhoun, K., Langer, J. C., Makowka, L., Ambus, U., Palmer, J. A., Campbell, A., Howard, V., Mikkelsaar, R. (1984). Palliation of advanced head and neck cancer with radiofrequency hyperthermia and cytotoxic chemotherapy. Cancer Journal Surgery, 27(1), 38–41.

Kim, S. K., Lim, H. K., Kim, Y. H., Lee, W. J., Lee, S. J., Kim, S. H., Lim, J. H., Kim, S. A. (2003). Hepatocellular carcinoma treated with radio-frequency ablation: Spectrum of imaging findings. Radiographics,.23(1), 107–121.

Simon, C. J., Dupuy, D. E., DiPetrillo, T. A., Safran, H. P., Grieco, C. A., Ng, T., Mayo-Smith, W. W. (2007). Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology, 243(1), 268–275.

Hynynen, K., Chung, A., Fjield, T., Buchanan, M., Daum, D., Colucci, V., Lopath, P., Jolesz, F. (1996). Feasibility of using ultrasound phased arrays for MRI monitored noninvasive surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 1043-1053.

Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., Bray, F. (2013) GLOBOCAN 2012 Cancer incidence and mortality worldwide: IARC Cancerbase No.11. Lyon, France: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr.

Tabar, L., Vitak, B., Chen, H. H., Yen, M. F., Duffy, S. W., Smith, R. A. (2001). Beyond randomized trials: Organized mammographic screening substantially reduces breast carcinoma mortality. Cancer, 91(9), 1724 –1731.

Andersson, I., and Ryden, S. (2001). Early detection and prevention: Benefits, costs and limitations of screening. In Tobias, J. S., Houghton, J., and Henderson, I. C. (eds.), Breast Cancer: New horisons in research and treatment (pp. 105-117). London: Arnold.

Dewhirst, M., Sim, D., Sapareto, S., Coner, W. (1984). Importance of minimum tumor temperature in determiningearly and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Research, 44(1), 43–50.

Myerson, R., Perez, C., Emami, B., Straube, W., Kuske, R., Leybovich, L., VonGerichten, D. (1990). Tumor control in longterm survivors following superficial hyperthermia. International Journal of Radiation Oncology, Biology & Physics, 18(5), 1123–1129.

Underwood, H. R., Burdette, E. C., Ocheltre, K. B., Magin, R. L., (1987). A multielement ultrasonic hyperthermia applicator with independent element control. International Journal of Hyperthermia, 3(3), 257–267.

Kennedy, J. E. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews: Cancer, 5(4), 321-327.

Dewhirst, M. W., Gibbs, F. A. Jr., Roemer, R. B., Samulski, T. V. (2000). Hyperthermia. In: Gunderson, L. L., Tepper J. E. (eds.). Clinical Radiation Oncology (1st ed.) Chapter 14 (pp. 256–82). New York: Churchill Livingstone.

Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G., Crum, L. A. (2003). Physical mechanisms of the therapeutic effect of ultrasound (A review). Acoustical Physics, 49(4), 369–388.

Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M. (2007). Hyperthermia - Description of a method and a review of clinical applications. Reports of Practical Oncology and Radiotherapy, 12(5), 267–275.

Sneed, P. K., Stauffer, P. R., Li, G. C., Stege, G. J. J. (2004). Hyperthermia. In Leibel, S. A., Phillips, T. L. (eds.). Textbook of Radiation Oncology (2nd ed.) Chapter 70 (pp. 1569–1596). Saunders.

McDannold, N. (2005). Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: Review of validation studies. International Journal of Hyperthermia, 21(6), 533–546.

Zhou, Y. F., (2011). High intensity focused ultrasound in clinical tumor ablation. World Journal of Clinical Oncology, 2(1), 8–27.

Bazan, I., Vazquez, M., Ramos, A., Vera, A., Leija, L. (2009). A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers. Ultrasonics, 49(3), 358–376.

Damianou, C. A., Sanghvi, N. T., Fry, F. J., MaassMoreno, R. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. Journal of the Acoustical Society of America, 102(1), 628–634.

Liu, X., Gong, X., Yin, C., Li, J., Zhang, D. (2008). Noninvasive eatimation of temperature elevations in biological tissues using acoustic nonlinearlity parameter imaging. Ultrasound in Medicine and Biology, 34(3), 414-424.

Ribault, M., Chapelon, J. Y., Cathignol, D., Gelet, A. (1998). Differential attenuation imaging for the characterization of high intensity focused ultrasound lesions. Ultrasonic Imaging, 20(3), 160–177.

Gear, R. B., Yan, M., Schneider, J., Succop, P., Heffelfinger, S. C., Clegg, D.J., (2007). Charles river sprague dawley rats lack early age-Dependent susceptibility to DMBA-Induced mammary carcinogenesis. International Journal of Biological Sciences, 3(7), 408-416.

Russo, I. H., Russo, J. (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. Journal of the National Cancer Institute, 61(6), 1439-1442.

Russo, I. H., Russo, J. (1996). Mammary gland neoplasia in long-term rodent studies. Environmental Health Perspectives, 104(9), 938-966.

Miyata, M., Furukawa, M., Takahashi, K., Gonzalez, F. J., Yamazoe, Y. (2001). Mechanism of 7, 12-dimethylbenz[a]anthracene-induced immunotoxicity: Role of metabolic activation at the target organ. Japanese Journal of Pharmacology, 86(3), 302-309.

Muggins, C., Briziarelli, G., and Button, H., Jr. (1959). Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumors. Journal of Experimental Medicine, 109(1), 25-42.

Jumaat, A. K., Wan Abdul Rahman, W. EZ., Ibrahim, A., Mahmud, R. (2010). Segmentation of masses from breast ultrasound images using parametric active contour algorithm. Procedia Social and Behavioral Sciences, 8, 640–647.

Kass, M., Witkin, A., Terzopoulos, D. (1986). Snakes: Active contour models. International Journal of Computer Vision, 1(4) 321-331.

Simon, C., Van Baren, P., Ebbini, E. S. (1998). Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control, 45(4), 1088–1099.

Pousek, L., Jelinek, M., Storkova, B., Novak, P. (2006). Noninvasive temperature monitoring using ultrasound tissue characterization method. In: Proceedings of the 2006 Information Technology Interfaces Conference. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 219–224.

Wu, X., Qian, S. Y., Sun, F. C., Zhang, J. (2007). Study of noninvasive temperature measurement based on B-mode ultrasonic image processing. Computer Engineering and Applications, 43, 178–179.

Chunlan, Y., Hao, Z., Shuicai, W., Yanping, B., Hongjian, G. (2010). Correlations between B-Mode ultrasonic image texture features and tissue temperature in microwave ablation. Journal of Ultrasound in Medicine, 29(12), 1787–1799.

Xu, T., Ye, Z. Q., Cai, W. M. (2006). Texture analysis methods used in B scan liver images. Foreign Medical Science Fascicle Biomedical Engineering, 29(4), 228–230.

Udomchai, T., Quan, C., Varghese, T. (2005) Ultrasonic noninvasive temperature estimation using echo shift gradient maps: simulation results. Ultrason Imaging, 27(3), 166–180.

Ren, X. Y., Wu, S. C., Zeng, Y. (2008). Experimental study for noninvasive monitoring of hyperthermia based on B-mode ultrasonic tissue characterization. Journal of Beijing University Technology, 34, 90–96.

Parkkinen, J. and Oja, E. (1990). Detecting texture periodicity from the co-occurrence matrix, Pattern Recognition

Letters, 11(1), 43-50.

Hill, C. R., ter Haar, G. R. (1995). High intensity focused ultrasound potential for cancer treatment. The British Journal of Radiology, 68(816), 1296–1303.

Hsiao, Y. S. (2013). Focused ultrasound thermal therapy monitoring using ultrasound, infrared thermal, and photoacoustic imaging techniques (Ph.D. dissertation at the University of Michigan).

Hynynen, K., Vykhodtseva, N.I., Chung, A., Sorrentino, V., Colucci, V., Jolesz, F.A. (1997). Thermal effects of focused ultrasound on the brain: Determination with MR imaging. Radiology, 204(1), 247–253.

Rangraz, P., Behnam, H., Tayakkoli, J., Nakagami. (2014). Imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue. Proceeding of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228(1),19-26.

Haar, G.R. (1995). Ultrasound focal beam surgery. Ultrasound in Medicine and Biology, 21(9), 1089-1100.

Zhang, S., Wan, M., Zhong, H., Xu, C., Liao, Z., Liu, H., Wang, S. (2009). Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high intensity focused ultrasound (HIFU) treatment. Ultrasound in Medicine and Biology, 35(11), 1828-1844.