Different material properties of cancellous bone influence analysis of glenoid component loosening: A finite element study

Authors

  • Abdul Hadi Abdul Wahab Universiti Teknologi Malaysia
  • Mohammed Rafiq Abdul Kadir Universiti Teknologi Malaysia
  • Muhammad Noor Harun Universiti Teknologi Malaysia
  • Ardiyansyah Syahrom Universiti Teknologi Malaysia
  • Mohammad Hanif Ramlee Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v13n4-2.817

Keywords:

Bone properties, orthotropic, isotropic, shoulder, glenoid loosening, Rocking Horse Phenomena

Abstract

Glenoid component loosening is one of common complications after total shoulder arthroplasty. In investigating the glenoid component loosening, the finite element study is one of methods that have been utilised by experts. Therefore, assigning material properties for all finite element models become crucial to avoid any misinterpretation which, later, lead to wrong prediction on the performance of glenoid implant. This study was conducted to achieve two objectives; (1) to analyse the effect of different bone properties towards micromotion and stress at implant and cement, and (2) to clarify simplification of bone properties in evaluating glenoid component loosening. A load of 750N was simulated at three different glenoid locations (centre – C, superior-anterior-SA, superior-posterior-SP) which imitate concentric and eccentric loadings for elderly people daily activities. Our result showed that large different in micromotion and stress at implant between orthotropic model and another two model (isotropic and full cortical) does not allow simplification for assigning material properties for bone. Thus, assigning cancellous bone as orthotropic material was a realistic material property to represent the real bone condition in evaluating glenoid implant loosening.

Author Biographies

Abdul Hadi Abdul Wahab, Universiti Teknologi Malaysia

Student at Department of Clinical Sciences

Mohammed Rafiq Abdul Kadir, Universiti Teknologi Malaysia

Sport Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (IHCE)

Muhammad Noor Harun, Universiti Teknologi Malaysia

Sport Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (IHCE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Ardiyansyah Syahrom, Universiti Teknologi Malaysia

Sport Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (IHCE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Mohammad Hanif Ramlee, Universiti Teknologi Malaysia

Medical Devices Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering

References

Abdul Wahab, A. H., Abdul Kadir, M. R., Kamarul, T., Harun, M. N., Syahrom, A. (2016). Analysis on stress and micromotion on various peg fixation at glenoid implant. Tribology - Materials, Surfaces & Interfaces, 10(1), 26-32.

Allred, J. J., Flores-Hernandez, C., Hoenecke Jr, H. R., D'Lima, D. D. (2016). Posterior augmented glenoid implants require less bone removal and generate lower stresses: a finite element analysis. Journal of Shoulder and Elbow Surgery, 25(5), 823-830.

Anglin, C., Wyss, U. P., Nyffeler, R. W., Gerber, C. (2001). Loosening performance of cemented glenoid prosthesis design pairs. Clinical Biomechanics, 16(2), 144-150.

Armstrong, A. D. L. G. S. (2013). Design Evolution of the glenoid component in total shoulder arthroplasty. JBJS Reviews, 1(2).

Baca, V., Horak, Z., Mikulenka, P., Dzupa, V. (2008). Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Medical Engineering & Physics, 30(7), 924-930.

Bohsali, K. I., Wirth, M. A., Rockwood, C. A., Jr. (2006). Complications of total shoulder arthroplasty. Journal of Bone Joint Surgery, 88(10), 2279-2292.

Couteau, B., Mansat, P., Estivalèzes, É., Darmana, R., Mansat, M., Egan, J. (2001). Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Clinical Biomechanics, 16(7), 566-575.

Davies, J. P., O'Connor, D. O., Burke, D. W., Jasty, M., Harris, W. H. (1988). The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities. Clinical Orthopaedics and Related Research (229), 156-161.

Geraldes, D. M., Hansen, U., Jeffers, J., Amis, A. A. (2017). Stability of small pegs for cementless implant fixation. Journal of Orthopaedic Research.

Geraldes, D. M., Phillips, A. T. M. (2014). A comparative study of orthotropic and isotropic bone adaptation in the femur. International Journal for Numerical Methods in Biomedical Engineering, 30(9), 873-889.

Gonzalez, J. -F., Alami, G. B., Baque, F., Walch, G., Boileau, P. (2011). Complications of unconstrained shoulder prostheses. Journal of Shoulder and Elbow Surgery, 20(4), 666-682.

Gupta, S., Van der Helm, F. C. T., Van Keulen, F. (2004). Stress analysis of cemented glenoid prostheses in Total Shoulder Arthroplasty. Journal of Biomechanics, 37(11), 1777-1786.

Huiskes, R., Weinans, H., Van Rietbergen, B. (1992). The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research, 274, 124-134.

Jones, R. B. (2013). Addressing glenoid erosion in anatomic total shoulder arthroplasty. Bulletin of the Hospital for Joint Disease (2013), 71 Suppl 2, S46-50.

Lacroix, D., Murphy, L. A., Prendergast, P. J. (2000). Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. Journal of Biomechanical Engineering, 122(4), 430-436.

Mansat, P., Barea, C., Hobatho, M.-C., Darmana, R., Mansat, M. (1998). Anatomic variation of the mechanical properties of the glenoid. Journal of Shoulder and Elbow Surgery, 7(2), 109-115.

Mansat, P., Briot, J., Mansat, M., Swider, P. (2007). Evaluation of the glenoid implant survival using a biomechanical finite element analysis: Influence of the implant design, bone properties, and loading location. Journal of Shoulder and Elbow Surgery, 16(3, Supplement), S79-S83.

Matsen, F. A., 3rd, Clinton, J., Lynch, J., Bertelsen, A., Richardson, M. L. (2008). Glenoid component failure in total shoulder arthroplasty. Journal of Bone and Joint Surgery, 90(4), 885-896.

Miller, Z., Fuchs, M. B., Arcan, M. (2002). Trabecular bone adaptation with an orthotropic material model. Journal of Biomechanics, 35(2), 247-256.

Murphy, B. P., Prendergast, P. J. (2000). On the magnitude and variability of the fatigue strength of acrylic bone cement. International Journal of Fatigue, 22(10), 855-864.

Patel, R. J., Wright, T. M., Gao, Y. (2014). Load transfer after cemented total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 23(10), 1553-1562.

Purdue, P. E., Koulouvaris, P., Nestor, B. J., Sculco, T. P. (2006). The central role of wear debris in periprosthetic Osteolysis. Musculoskeletal Journal of Hospital for Special Surgery, 2(2), 102-113.

Rodosky, M. W., Bigliani, L. U. (1996). Indications for glenoid resurfacing in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 5(3), 231-248.

Sarah, J., Sanjay, G., Sanjay, S., Carolyn, A., Emery, R., Andrew, A., Ulrich, H. (2010). Failure mechanism of the all-polyethylene glenoid implant. Journal of Biomechanics, 43(4), 714-719.

Stone, K. D., Grabowski, J. J., Cofield, R. H., Morrey, B. F., An, K. N. (1999). Stress analyses of glenoid components in total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 8(2), 151-158.

Terrier, A., Büchler, P., Farron, A. (2005). Bone–cement interface of the glenoid component: Stress analysis for varying cement thickness. Clinical Biomechanics, 20(7), 710-717.

Topoleski, L. D., Ducheyne, P., Cuckler, J. M. (1990). A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms. Journal of Biomedical Materials Research, 24(2), 135-154.

Wahab, A. H. A., Kadir, M. R. A., Harun, M. N., Kamarul, T., Syahrom, A. (2017). Number of pegs influence focal stress distributions and micromotion in glenoid implants: a finite element study. Medical & Biological Engineering & Computing, 55(3), 439-447.

Wirtz, D. C., Pandorf, T., Portheine, F., Radermacher, K., Schiffers, N., Prescher, A., . . . Niethard, F. U. (2003). Concept and development of an orthotropic FE model of the proximal femur. Journal of Biomechanics, 36(2), 289-293.

Yongpravat, C., Kim, H. M., Gardner, T. R., Bigliani, L. U., Levine, W. N., Ahmad, C. S. (2013). Glenoid implant orientation and cement failure in total shoulder arthroplasty: a finite element analysis. Journal of Shoulder and Elbow Surgery, 22(7), 940-947.

Zhang, J., Yongpravat, C., Kim, H. M., Levine, W. N., Bigliani, L. U., Gardner, T. R., Ahmad, C. S. (2013). Glenoid articular conformity affects stress distributions in total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 22(3), 350-356.

Zhang, Q.-H., Cossey, A., Tong, J. (2016). Stress shielding in bone of a bone-cement interface. Medical Engineering & Physics, 38(4), 423-426.

Downloads

Published

17-12-2017