The effect of stress distribution and displacement of open subtalar dislocation in using titanium alloy and stainless steel mitkovic external fixator – a finite element analysis

Authors

  • Muhammad Hanif Hanif Ramlee Universiti Teknologi Malaysia http://orcid.org/0000-0003-2705-8379
  • Abdul Hadi Abd Wahab Universiti Teknologi Malaysia
  • Asnida Abd Wahab Universiti Teknologi Malaysia
  • Hadafi Fitri Mohd Latip Universiti Teknologi Malaysia
  • Siti Asmah Daud Universiti Teknologi Malaysia
  • Mohammed Rafiq Abdul Kadir Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v13n4-2.804

Keywords:

Finite element, biomechanics, ankle dislocations, mitkovic external fixator, micromovement

Abstract

An external fixator is normally used by medical surgeons in treating subtalar dislocation due to its biomechanical characteristics that can providing an adequate stability, preventing deformity (mal-union and non-union), reduce rate of infections, and promoting fast healing process as compared to coventional internal fixator. Apart from the configurations and fixation techniques, previous studies has mentioned that the stability of external fixator can be altered and manipulated by using different materials, e.g. stainless steel, titanium alloy and polymer. To be noted, the current available research works that have been investigated on different materials of external fixator are still lacking, therefore, the present study is aims to conduct related study. The main objective of the research work is to simulate finite element model of foot and ankle joint associated with open subtalar dislocation in which treated with Mitkovic external fixator by using two different material properties; titanium alloy (Model 1) and stainless steel (Model 2). The three-dimensional model of foot and ankle joint were reconstructed using images of CT dataset. For the soft tissues, cartilages at the ankle joint were developed by offsetting the bone surfaces with 1 mm thickness while ligaments were modelled with linear links. Homogeneous and isotropic properties were assigned to the bone, Mooney-Rivlin model for cartilage and specific stiffness value for ligaments. In order to simulate stance phase during walking condition, an axial load of 350 N was applied to the proximal tibia bone. The results of von Mises stress demonstrated that Model 2 has a low magnitude (127 MPa) at the pin-bone interface of tibia bone, compared with Model 1 (369 MPa). As for the local displacement at the bony segment of fibula, Model 2 (3.3 mm) indicated high stability of the external fixator than Model 1 (7.4 mm). In conclusion, the use of stainless steel material for Mitkovic external fixator can provide adequate stability and optimum stress distribution.

Author Biographies

Muhammad Hanif Hanif Ramlee, Universiti Teknologi Malaysia

Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME)

Abdul Hadi Abd Wahab, Universiti Teknologi Malaysia

Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME)

Asnida Abd Wahab, Universiti Teknologi Malaysia

Faculty of Biosciences and Medical Engineering (FBME)

Hadafi Fitri Mohd Latip, Universiti Teknologi Malaysia

Faculty of Biosciences and Medical Engineering (FBME)

Siti Asmah Daud, Universiti Teknologi Malaysia

Department of Electrical and Electronic Engineering, Faculty of Engineering

Mohammed Rafiq Abdul Kadir, Universiti Teknologi Malaysia

Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME)

References

Aarnes, G. T., Steen, H., Kristiansen, L. P., Festo, E., Ludvigsen, P. (2006). Optimum loading mode for axial stiffness testing in limb lengthening. Journal of Orthopaedic Research, 24(3), 348-354.

Akiyama, K., Sakai, T., Sugimoto, N., Yoshikawa, H., Sugamoto, K. (2012). Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density. Osteoarthritis and Cartilage, 20, 296-304.

Ansah, M., Sella, E. J. (2000). Treatment of complete open medial subtalar dislocation with an external fixateur: A case report. Foot and Ankle Surgery, 6, 179-184.

Anwar, R., Tuson, K. W. R., Khan, S. A. (2008). Classification and Diagnosis in Orthopaedic Trauma (Vol. One). New York: Cambridge University Press.

Bajuri, M. N., Kadir, M. R. A., Raman, M. M., Kamarul, T. (2012). Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: A finite element analysis. Medical Engineering & Physics, 34(9), 1294-1302.

Bartolozzi, P., Lavini, F. (2004). Fractures of the Tibia Pilon. Milan: Springer.

Benli, S., Aksoy, S., Havitcioglu, H., Kucuk, M. (2008). Evaluation of bone plate with low-stiffness material in terms of stress distribution. Journal of Biomechanics, 41, 3229-3235.

Beumar, A., Van Hemert, W., Swierstra, B., Jasper, L., Belkoff, S. M. (2003). A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot Ankle International, 24, 426-429.

Brianza, S., Brighenti, V., Lansdowne, J. L., Schwieger, K., Boure, L. (2011). Finite element analysis of a novel pin-sleeve system for external fixation of distal limb fractures in horses. The Veterinary Journal, 190, 260-267.

Calhoun, J. H., Li, F., Ledbetter, B. R., Viegas, S.F. (1994). A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot and Ankle International, 15, 125-133.

Carrigan, S. D., Whiteside, R. A., Pichora, D. R., Small, C. F. (2003). Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Annals of Biomedical Engineering, 31(6), 718-725.

Carroll, E. A., Koman, L. A. (2010). External fixation and temporary stabilization of femoral and tibial trauma. Journal of Surgical Orthopaedic Advances, 20(1), 74-81.

Chandran, P., Puttaswamaiah, R., Dhillon, M.S., & Gill, S.S. (2006). Management of complex open fracture injuries of the midfoot with external fixation. The Journal of Foot and Ankle Surgery, 5(45), 308-315.

Cheung, J. T. -M., Zhang, M., Leung, A. K. -L., Fan, Y. -B. (2005). Three-dimensional finite element analysis of the foot during standing-a material sensitivity study. Journal of Biomechanics, 38, 1045-105.

Cheung, J. T. -M., Zhang, M., An, K. N. (2006). Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clinical Biomechanics, 21, 194-203.

D'Anca, A. F. (1971). Lateral rotary dislocation of the ankle without fracture. Journal Bone Joint Surgery, 52A, 594-596.

Daruwella, J. S. (1974). Medial dislocation of the ankle without fracture: A case report. British Journal of Accidental Surgery, 5(3), 215-216.

Dlimi, F., Mahfoud, M., Berrada, M. S., Bardouni, A. El., Yaacoubi, M. El. (2011). Open medial ankle dislocation without associated fracture : A case report. Foot and Ankle Surgery, 17, e55-e57.

Donaldson, F. E., Pankaj, P., Simpson, A. H. R. W. (2012). Bone properties affect loosening of half-pin external fixators at the pin-bone interface. Injury, 43, 1764-1770.

Ezquerro, F., Jimenez, S., Perez, A., Prado, M., de Diego, G., Simon, A. (2007). The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: A finite element study. Medical Engineering and Physics, 29, 652-660.

Fahey, J. J, Murphy, & J. L. (1965). Talotibial dislocation of the ankle without fracture. Surgical Clinic of North America, 45, 80-101.

Golner, J. L., Poletti, S. C., Gates, III H. S. (1995). Severe open subtalar dislocations: Long term results. Journal of Bone Joint Surgery, 77A(7), 1075-1079.

Gorsse, S., Miracle, D. B. (2003). Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcement. Acta Materialia, 51, 2427-2442.

Haines, C. (1939). Compound dislocation of the tibiotalar joint without fracture and without separation. Journal Bone Joint Surgery, 21(205), 338.

Haraguchi, N., Armiger, R. S., Myerson, M. S., Campbell, J. T., Chao, E. Y. (2009). Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Foot and Ankle International, 30, 177-185.

Harris, J., Huffman, L., Suk, M. (2008). Lateral peritalar dislocation: A case report. The Journal of Foot and Ankle Surgery, 47(1), 56-59.

Hyde, C. J., Sun, W., Leen, S. B. (2010). Cyclic thermo-mechanical material modelling and testing of 316 stainless steel. International Journal of Pressure Vessels and Piping, 87, 365-372.

Hyder, N., Jones, S., Nair, B. (1997). Medial subtalar dislocation. The Foot, 7, 34-36.

Iaquinto, J. M., Wayne, J. S. (2010). Computational model of the lower leg and foot/ankle complex: application to arch stability. Journal of Biomechanical Engineering, 132(2).

Inokuchi, S., Hashimoto, T., Usami, N., Ogawa, K. (1996). Subtalar dislocation of the foot. Foot, 6, 168-174.

Izaham, R. M. A. R., Kadir, M. R. A., Rashid, A. H. A., Hossain, M. G., Kamarul, T. (2012). Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury, 43, 898-902.

Jerome, J. T. J. , Varghese, M., Sankaran, B., Thomas, S., Thirumagal, S. K. (2008). Unusual subtalar dislocation: A case report. The Foot, 18, 52-55.

Kim, H. -J., Kim, S. -H., Chang, S. -H. (2011). Bio-mechanical analysis of a fractures tibia with composite bone plates according to the diaphyseal oblique fracture angle. Composites Part B: Engineering, 42, 666-674.

Liacouras, P. C., Wayne, J. S. (2007). Computational modeling to predict mechanical function of joints: Application to the lower leg with simulation of two cadaver studies. ASME Journal of Biomechanical Engineering, 129, 811-817.

Liacouras, P. C., Wayne, J. S. (2007). Computational modeling to predict mechanical function of joints: Application to the lower leg simulation of two cadaver studies. Journal of Biomechanical Engineering, 129, 811-817.

Liu, X., Zhang, M. (2013). Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex. Clinical Biomechanics, 28, 61-67.

Marsh, J. L., Nepola, J. V., Wuest, T. K., Osteen, D., Cox, K., Oppenheim, W. (1991). Unilateral external fixation until healing with the dynamic axial fixator for severe open tibial fractures. Journal of Orthopaedic Trauma, 5(3), 341-348.

Milenkovic, S., Mitkovic, M., Bumbasirevic, M. (2006). External fixation of open subtalar dislocation. Injury, 37, 909-913.

Millington, S. A., Grabner, M., Wozelka Mag, R., Anderson, D. D., Hurwitz, S. R., Crandall, J. R. (2007). Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system. Osteoarthritis and Cartilage, 15, 205-211.

Mitkovic, M., Bumbasirevic, M., Golubovic, Z., Micic, I., Mladenovic, D., Milenkovic, S., . . . Petkovic, D. (2005). New concept in external fixation. Acta Chirurgica Iugoslavica, 52(2), 107-111.

Mitkovic, M., Bumbasirevic, M., Golubovic, Z., Mladenovic, D., Milenkovic, S., Micic, I., . . . Abdala, K. (2005). Reconstructive procedures on lower extremities using Mitkovic external fixation system. Acta Chirurgica Iugoslavica, 52(2), 117-119.

Nakamura, S., Crowninshield, R. D., Cooper, R. R. (1981). An analysis of soft tissue loading in the foot-a preliminary report. Bulletin of Prosthetics Research., 18, 27-34.

Netter, F. H. (2003). Atlas of Human Anatomy (Third ed.). USA: ICON Learning System.

Pfaeffle, H., Tomaino, M., Grewal, R., Xu, J., Boardman, N., Woo, S., Herndon, J. (1996). Tensile properties of the interosseous membrane of the human forearm. Journal Orthopaedic Research, 14, 842-845.

Pinner, S. J., Sangeorzan, B. J. (2001). Fractures of the tarsal bones. Orthopaedic Clinical of North America, 32, 21-33.

Ramlee, M. H., Abdul Kadir, M. R., Murali, M. R., Kamarul, T. (2014a). Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation- A finite element analysis. Medical Engineering & Physics, 36(10), 1358-1366.

Ramlee, M. H., Abdul Kadir, M. R., Murali, M. R., Kamarul, T. (2014b). Finite element analysis if three commonly used external fixation devices for treating Type III pilon fractures. Medical Engineering & Physics, 36(10), 1322-1330.

Ramlee, M. H., Kadir, M. R. A., Harun, H. (2013). Three-dimensional modeling and analysis of a human ankle joint. Proceeding - 2013 IEEE Student Conference on Research and Development, SCOReD 2013. 16 Dec 2013 - 17 Dec. 2013. Putrajaya, Malaysia: EEE, 74-78.

Ramlee, M. H., Kadir, M. R. A., Harun, H. (2014). Three-dimensional modelling and finite element analysis of an ankle external fixator. Advanced Materials Research, 845, 183-188.

Seibert, F. J., Fankhauser, F., Elliot, B., Stockenhuber, N., Peicha, G. (2003). External fixation in trauma of the foot and ankle. Clinical Podiatric Medicine and Surgery, 20(139-130).

Siegler, S., Block, J., Schneck, C. (1988). The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle, 8, 234-242.

Simkin, A. (1982). Structural Analysis Of The Human Foot In Standing Posture. (Ph.D.), Tel Aviv University, Tel Aviv.

Sloane, D, Coutts, M. B. (1937). Traumatic dislocation of the ankle without fracture. Journal Bone Joint Surgery, 19, 111.

Vasquez, A. A., Pedersen, H. L., Lidgren, L., Taylor, M. (2003). Finite element analysis of the initial stability of ankle arthodesis with internal fixation: flat cut versus intact joint contours. Clinical Biomechanics, 18, 244-253.

Vasquez, A. A., Pedersen, H. L., Lidgren, L., Taylor, M. (2004). Initial stability of ankle arthrodesis with three-srew fixation. A finite element analysis. Clinical Biomechanics, 19, 751-759.

Wang, C. L., Cheng, C. K., Chen, C. W., Lu, C. M., Hang, Y. S., Liu, T. K. (1995). Contact areas and pressure distributions in the subtalar joint. Journal of Biomechanics, 28(3), 269-279.

Yosibash, Z., Trabelsi, N., Milgrom, C. (2007). Reliable simulations of the human proximal femur by high-order finite element analysis validated

Downloads

Published

17-12-2017