Mixed convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation effect

Authors

  • Muhammad Khairul Anuar Mohamed Centre of Inter Disciplinary, DRB-HICOM University of Automotive Malaysia, Peramu Jaya Industrial Area, 26607 Pekan, Pahang Darul Makmur, Malaysia
  • Norhafizah Md Sarif Applied & Industrial Mathematics Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, MALAYSIA.
  • Nor Aida Zuraimi Md Noar Applied & Industrial Mathematics Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, MALAYSIA.
  • Mohd Zuki Salleh Applied & Industrial Mathematics Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, MALAYSIA.
  • Anuar Mohd Ishak School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, MALAYSIA.

DOI:

https://doi.org/10.11113/mjfas.v14n1.803

Keywords:

Mixed convection, Circular cylinder, Nanofluid, Viscous dissipation

Abstract

In this study, the mathematical modeling for the mixed convection boundary layer flow past a horizontal circular cylinder in a nanofluid with the presence of viscous dissipation effect is considered. The system of governing non-linear partial differential equations are first transformed to a more convenient form before being solved numerically using the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number, Sherwood number and skin friction coefficient as well as the concentration, the temperature and the velocity profiles. The features of the flow and heat transfer characteristics for various values of the Eckert number, Lewis number, Brownian motion parameter, thermophoresis parameter, mixed convection parameter, concentration mixed convection parameter and Prandtl number are analyzed and discussed. It is suggested that the presence of buoyancy forces in mixed convection delayed the separation in assisting flow. Further, the Nusselt number decreases while Sherwood number increases with the increase of Brownian parameter, thermophoresis parameter and the Lewis number. It is worth mentioning that the results in this paper is important especially in understanding the nanofluid parameters behaviour as cooling medium in such applications like transformer liquid submersion system, power supply unit in supercomputer and liquid cooling for electronic components like capacitor and transistor.

References

Ahmad, S., Arifin, N. M., Nazar, R. & Pop, I. (2009). Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity. International Journal of Thermal Sciences, 48(10), 1943-1948.

Aldoss, T. K., Ali, Y. D. & Al-Nimr, M. A. (1996). MHD mixed convection from a horizontal circular cylinder. Numerical Heat Transfer, Part A: Applications, 30(4), 379-396.

Anwar, I., Amin, N. & Pop, I. (2008). Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder. International Journal of Non-Linear Mechanics, 43(9), 814-821.

Anwar, I., Qasim, A. R., Ismail, Z., Salleh, M. Z. & Shafie, S. (2013). Chemical reaction and uniform heat generation/absorption effects on MHD stagnation-point flow of a nanofluid over a porous sheet. World Applied Sciences Journal, 24(10), 1390-1398.

Gebhart, B. (1962). Effects of viscous dissipation in natural convection. Journal of Fluid Mechanics, 14(02), 225-232.

Hussanan, A., Khan, I., Hashim, H., Mohamed, M. K. A., Ishak, N., Sarif, N. M. & Salleh, M. Z. (2016). Unsteady MHD flow of some nanofluids past an accelerated vertical plate embedded in a porous medium. Jurnal Teknologi, 78(2), 121-126.

Jain, P. & Lohar, B. (1979). Unsteady mixed convection heat transfer from a horizontal circular cylinder. Journal Heat Transfer, 101(1), 126-131.

Jan, S. A. A., Ali, F., Sheikh, N. A., Khan, I., Saqib, M. & Gohar, M. (2017). Engine oil based generalized brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-Baleanu fractional model. Numerical Methods for Partial Differential Equations, 00, 1-17.

Khan, I. (2017). Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium. Journal of Molecular Liquids, 233, 442-451.

Kho, Y. B., Hussanan, A., Mohamed, M. K. A., Sarif, N. M., Ismail, Z. &

Salleh, M. Z. (2017). Thermal radiation effect on MHD Flow and heat transfer analysis of Williamson nanofluid past over a stretching sheet with constant wall temperature. Journal of Physics: Conference Series, 890(1), 1-6.

Kumari, M. & Nath, G. (1989). Unsteady mixed convection with double diffusion over a horizontal cylinder and a sphere within a porous medium. Wärme−und Stoffübertragung, 24, 103-109.

Merkin, J. H. (1977). Mixed convection from a horizontal circular cylinder. International Journal of Heat and Mass Transfer, 20(1), 73-77.

Mohamed, M. K. A., Noar, N. A. Z., Salleh, M. Z. & Ishak, A. 2015. Stagnation point flow past a stretching sheet in a nanofluid with slip condition. AIP Proceedings of International Statistical Conference (ISM-II), 1643, 635-641.

Mohamed, M. K. A., Noar, N. A. Z., Salleh, M. Z. & Ishak, A. (2016). Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation. Sains Malaysiana, 45(2), 289-296.

Nazar, R. 2003. Mathematical model for free and mixed convection boundary layer flows of micropolar fluids. Ph.D. Thesis, Universiti Teknologi Malaysia.

Nazar, R., Amin, N. & Pop, I. (2003). Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature. International Journal of Numerical Methods for Heat & Fluid Flow, 13(1), 86-109.

Nazar, R., Tham, L., Pop, I. & Ingham, D. (2011). Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transport in Porous Media, 86(2), 517-536.

Rashad, A. M., Chamkha, A. J. & Modather, M. (2013). Mixed convection boundary-layer flow past a horizontal circular cylinder embedded in a porous medium filled with a nanofluid under convective boundary condition. Computers & Fluids, 86, 380-388.

Roşca, A. V., Roşca, N. C. & Pop, I. (2014). Note on dual solutions for the mixed convection boundary layer flow close to the lower stagnation point of a horizontal circular cylinder: Case of constant surface heat flux. Sains Malaysiana, 43(8), 1239-1247.

Roşca, N. C. & Pop, I. (2014). Unsteady boundary layer flow of a nanofluid past a moving surface in an external uniform free stream using Buongiorno’s model. Computers & Fluids, 95, 49-55.

Salleh, M. Z., Nazar, R. & Pop, I. (2010). Mixed convection boundary layer flow over a horizontal circular cylinder with Newtonian heating. Heat and Mass Transfer, 46(11-12), 1411-1418.

Tham, L. & Nazar, R. (2012). Mixed convection flow about a solid sphere embedded in a porous medium filled with a nanofluid. Sains Malaysiana, 41(12), 1643-1649.

Udhayakumar, S., Abin Rejeesh, A. D., Sekhar, T. V. S. & Sivakumar, R. (2016). Numerical investigation of magnetohydrodynamic mixed convection over an isothermal circular cylinder in presence of an aligned magnetic field. International Journal of Heat and Mass Transfer, 95, 379-392.

Wong, K. V. & De Leon, O. (2010). Applications of Nanofluids: Current and Future. Advances in Mechanical Engineering, 2010, 1-11.

Downloads

Published

08-03-2018