Study on empathetic-pain perception in brain induced by three levels of empathetic-pain perception stimuli
DOI:
https://doi.org/10.11113/mjfas.v13n4-2.764Keywords:
EEG, Empathetic-pain, ERSP, IAPS database, source locationAbstract
Empathetic-pain perception is a divergence from empathy which is a pain perceived as a reflection of perception from others. The study of empathetic-pain perception and empathy were always related with psychological disorder effecting social and humanity values. The process involved in empathetic-pain perception formations in brain were believed to be different if induced by different level of empathetic-pain perception stimuli. Therefore, this paper was aimed to study the processes involved in empathetic-pain perception formation by revealing the activation-time intervals and source location of the highest empathetic-pain perception intensity. This study conducted an experiment to induce empathetic-pain perception on 16 participants using still pictures as visual-stimuli. Electroencephalograph (EEG) recorded brain signal of the participants during the visual-stimuli presentations while the EEG signal were analysed using MATLAB® toolbox, EEGLAB. Time/frequency decomposition in EEGLAB produces ERSP images which determines the activation-time intervals for empathetic-pain perception and, by performing source localization within the activation-time intervals using sLORETA, the source locations for most active processes in empathetic-pain perception were determined. The processes involved in empathetic-pain perception formation in every level were ‘stimuli-learning’ and ‘memory-reconstructions’ by Posterior Cingulate BA 30, pain-regulation by either Postcentral Gyrus BA 2, Cingulate Gyrus BA 24 or both, and visual-stimuli and visual-memory processing by Lingual Gyrus at almost similar time intervals. However, the processes were also performed by various brain areas to either perform attention-sustain process while managed working memory and self-control regulation by Middle Frontal Gyrus BA 46, mirror-neurons activation while processed attention information and emotions by Inferior Parietal Lobule BA 40, multisensory integration by Superior Temporal Gyrus BA 22, or motor-neurons activation to control the skeletal system respectively in every level by Paracentral Lobule BA 6 and Precentral Gyrus BA44. In conclusion, the empathetic-pain perception formation process discovery were necessary to differentiate every affectional level of the empathetic-pain perception.References
Bach, F. R., Jordan, M. I. (2002). Finding clusters in independent component analysis. Berkeley,California: Computer Science Division, University of California.
Barbas, H. (2007). Flow of Information for emotions through temporal and orbitofrontal pathways. Journal of Anatomy, 211(2), 237-249.
Baron-Cohen, S., Wheelwright, S. (2004). The empathy quotient: an investigation of adults with asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163-175.
Benedek, E. P., Schetky, D. H. (1987). Problems in validating allegations of sexual abuse. Part 1: Factors affecting perception and recall of events. Journal of the American Academy of Child & Adolescent Psychiatry, 26(6), 912-915.
Bloise, S. M., Johnson, M. K. (2007). Memory for emotional and neutral information: Gender and individual differences in emotional sensitivity. Memory, 15(2), 192-204.
Borsook, D., & Becerra, L. (2009). Emotional pain without sensory pain—dream on? Neuron, 61(2), 153-155.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10, 433-436.
Campbell‐Yeo, M., Latimer, M., & Johnston, C. (2008). The empathetic response in nurses who treat pain: concept analysis. Journal of advanced nursing, 61(6), 711-719.
Chatrian, G., Lettich, E., & Nelson, P. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG technology, 25(2), 83-92.
Churchland, P. S., & Sejnowski, T. J. (2016). The computational brain. MIT press.
Colman, A. M. (2015). A Dictionary of Psychology. USA: Oxford University Press.
Committee, E. P. N. (1994). Guideline thirteen: guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 11, 111-113.
Davison, M. (2014). Developing an historical empathy pathway with new zealand secondary school students. International Journal of Historical Learning, Teaching and Research, 12(2), 05-21.
De Vignemont, F., Jacob, P. (2012). What is it like to feel another’s pain?*. Philosophy of Science, 79(2), 295-316.
De Waal, F. B. M. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279-300.
Decety, J., Chen, C., Harenski, C., Kiehl, K. A. (2013). An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Frontiers in Human Neuroscience, 7, 489.
Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience Methods, 134(1), 9-21.
Dragoi, V. (2016). Visual Processing: Cortical Pathways.: Department of Neurobiology and Anatomy-The University of Texas Medical School at Houston. Retrieved from:
URL: http://nba.uth.tmc.edu/neuroscience/s2/chapter15.html Eisenberg, N., Strayer, J. (1990). Empathy and its development: CUP Archive.
Escudero, J., Hornero, R., Abásolo, D., Fernández, A. (2011). Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Annals of Biomedical Engineering, 39(8), 2274-2286.
Goldstein, A. P., Goedhart, A. (1973). The use of structured learning for empathy enhancement in paraprofessional psychotherapist training. Journal of Community Psychology, 1(2), 168-173.
Goldstein, A. P., Michaels, G. Y. (1985). Empathy: Development, training, and consequences. Erlbaum Associates, Incorporated, Lawrence.
Hare, R. D., Clark, D., Grann, M., & Thornton, D. (2000). Psychopathy and the predictive validity of the PCL-R: An international perspective. Behavioral Sciences & The Law, 18(5), 623-645.
Haynes, J.-D., Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686-691.
Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20(4), 721-733.
Hoffmann, S., & Falkenstein, M. (2008). The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One, 3(8), e3004.
Jackson, P. L., Brunet, E., Meltzoff, A. N., Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752-761.
Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.
Jones, A. P., Happé, F. G., Gilbert, F., Burnett, S., & Viding, E. (2010). Feeling, caring, knowing: different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. Journal of Child Psychology and Psychiatry, 51(11), 1188-1197.
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.
Kosslyn, S. M., Thompson, W. L., Kim, I. J., Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378(6556), 496-498.
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Retrieved from https://www2.unifesp.br/dpsicobio/adap/instructions.pdf
Lewis, N. (1991). Word power made easy. Simon and Schuster. New York: Pocket Books.
Lynam, D. R., Whiteside, S., Jones, S. (1999). Self-reported psychopathy: A validation study. Journal of Personality Assessment, 73(1), 110-132.
Martin, L. J., Hathaway, G., Isbester, K., Mirali, S., Acland, E. L., Niederstrasser, N., et al. (2015). Reducing social stress elicits emotional contagion of pain in mouse and human strangers. Current Biology, 25(3), 326-332.
Maziyar, M., Yunus, J., Utama, N. P. (2015). The Effect of Ramadan fasting on Visual spatial attention through food stimuli. Research Journal of Medical Sciences, 9(5), 279-288.
McDonald, N. M., Mesinger, D. S. The development of empathy: How, When, and why Free will, emotions, and moral actions. Philosophy and Neuroscience in Dialogue: In Press.
Molavi, M., Yunus, J., & Utama, N. P. (2016). The effect of Ramadan fasting on spatial attention through emotional stimuli. Psychology Research and Behavior Management, 9, 105-114.
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H.-J., Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. The Journal of Neuroscience, 27(42), 11431-11441.
Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5-12.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.
Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson, R., et al. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
Schwaber, E. A. (2010). Reflections on Heinz Kohut's last presentation,“On Empathy,” 1981: Its Impact On My Own Pathway. International Journal of Psychoanalytic Self Psychology, 5(2), 160-176.
Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157-1162.
Utama, N. P., Takemoto, A., Koike, Y., Nakamura, K. (2008). Serial processing of emotional type and intensity: Evidence from an ERP Study. In M. Ishikawa, K. Doya, H. Miyamoto & T. Yamakawa (Eds.), Neural Information Processing: 14th International Conference, ICONIP 2007, Kitakyushu, Japan, November 13-16, 2007, Revised Selected Papers, Part II (pp. 960-968). Berlin, Heidelberg: Springer Berlin Heidelberg.
Utama, N. P., Takemoto, A., Koike, Y., Nakamura, K. (2009). Phased processing of facial emotion: an ERP study. Neuroscience Research, 64(1), 30-40.
Utama, N. P., Takemoto, A., Nakamura, K., Koike, Y. (2009). Single-trial EEG data to classify type and intensity of facial emotion from P100 and N170. Paper presented at the International Joint Conference on Neural Networks (IJCNN 2009). 14-19 June 2009. Atlanta, GA, USA: IEEE, 3156-3163. Waite, M., Hawker, S. (2009). Compact Oxford dictionary and thesaurus. USA: Oxford University Press.
Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72(8), 2031-2046.
Zeki, S., Watson, J., Lueck, C., Friston, K. J., Kennard, C., Frackowiak, R. (1991). A direct demonstration of functional specialization in human visual cortex. The Journal of Neuroscience, 11(3), 641-649.