Study on empathetic-pain perception in brain induced by three levels of empathetic-pain perception stimuli


  • Siti Norhayati Md Yassin Universiti Teknologi Malaysia
  • Nugraha Priya Utama Universiti Teknologi Malaysia
  • Maheza Irna Mohamad Salim Universiti Teknologi Malaysia



EEG, Empathetic-pain, ERSP, IAPS database, source location


Empathetic-pain perception is a divergence from empathy which is a pain perceived as a reflection of perception from others.  The study of empathetic-pain perception and empathy were always related with psychological disorder effecting social and humanity values.  The process involved in empathetic-pain perception formations in brain were believed to be different if induced by different level of empathetic-pain perception stimuli.  Therefore, this paper was aimed to study the processes involved in empathetic-pain perception formation by revealing the activation-time intervals and source location of the highest empathetic-pain perception intensity.  This study conducted an experiment to induce empathetic-pain perception on 16 participants using still pictures as visual-stimuli.  Electroencephalograph (EEG) recorded brain signal of the participants during the visual-stimuli presentations while the EEG signal were analysed using MATLAB® toolbox, EEGLAB.  Time/frequency decomposition in EEGLAB produces ERSP images which determines the activation-time intervals for empathetic-pain perception and, by performing source localization within the activation-time intervals using sLORETA, the source locations for most active processes in empathetic-pain perception were determined.  The processes involved in empathetic-pain perception formation in every level were ‘stimuli-learning’ and ‘memory-reconstructions’ by Posterior Cingulate BA 30, pain-regulation by either Postcentral Gyrus BA 2, Cingulate Gyrus BA 24 or both, and visual-stimuli and visual-memory processing by Lingual Gyrus at almost similar time intervals.  However, the processes were also performed by various brain areas to either perform attention-sustain process while managed working memory and self-control regulation by Middle Frontal Gyrus BA 46, mirror-neurons activation while processed attention information and emotions by Inferior Parietal Lobule BA 40, multisensory integration by Superior Temporal Gyrus BA 22, or motor-neurons activation to control the skeletal system respectively in every level by Paracentral Lobule BA 6 and Precentral Gyrus BA44.  In conclusion, the empathetic-pain perception formation process discovery were necessary to differentiate every affectional level of the empathetic-pain perception.

Author Biographies

Siti Norhayati Md Yassin, Universiti Teknologi Malaysia

Clinical Science Department, Faculty of Biosciences and Medical Engineering

Nugraha Priya Utama, Universiti Teknologi Malaysia

Clinical Science Department, Faculty of Biosciences and Medical Engineering

Maheza Irna Mohamad Salim, Universiti Teknologi Malaysia

Clinical Science Department, Faculty of Biosciences and Medical Engineering


Bach, F. R., Jordan, M. I. (2002). Finding clusters in independent component analysis. Berkeley,California: Computer Science Division, University of California.

Barbas, H. (2007). Flow of Information for emotions through temporal and orbitofrontal pathways. Journal of Anatomy, 211(2), 237-249.

Baron-Cohen, S., Wheelwright, S. (2004). The empathy quotient: an investigation of adults with asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163-175.

Benedek, E. P., Schetky, D. H. (1987). Problems in validating allegations of sexual abuse. Part 1: Factors affecting perception and recall of events. Journal of the American Academy of Child & Adolescent Psychiatry, 26(6), 912-915.

Bloise, S. M., Johnson, M. K. (2007). Memory for emotional and neutral information: Gender and individual differences in emotional sensitivity. Memory, 15(2), 192-204.

Borsook, D., & Becerra, L. (2009). Emotional pain without sensory pain—dream on? Neuron, 61(2), 153-155.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10, 433-436.

Campbell‐Yeo, M., Latimer, M., & Johnston, C. (2008). The empathetic response in nurses who treat pain: concept analysis. Journal of advanced nursing, 61(6), 711-719.

Chatrian, G., Lettich, E., & Nelson, P. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG technology, 25(2), 83-92.

Churchland, P. S., & Sejnowski, T. J. (2016). The computational brain. MIT press.

Colman, A. M. (2015). A Dictionary of Psychology. USA: Oxford University Press.

Committee, E. P. N. (1994). Guideline thirteen: guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 11, 111-113.

Davison, M. (2014). Developing an historical empathy pathway with new zealand secondary school students. International Journal of Historical Learning, Teaching and Research, 12(2), 05-21.

De Vignemont, F., Jacob, P. (2012). What is it like to feel another’s pain?*. Philosophy of Science, 79(2), 295-316.

De Waal, F. B. M. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279-300.

Decety, J., Chen, C., Harenski, C., Kiehl, K. A. (2013). An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Frontiers in Human Neuroscience, 7, 489.

Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience Methods, 134(1), 9-21.

Dragoi, V. (2016). Visual Processing: Cortical Pathways.: Department of Neurobiology and Anatomy-The University of Texas Medical School at Houston. Retrieved from:

URL: Eisenberg, N., Strayer, J. (1990). Empathy and its development: CUP Archive.

Escudero, J., Hornero, R., Abásolo, D., Fernández, A. (2011). Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Annals of Biomedical Engineering, 39(8), 2274-2286.

Goldstein, A. P., Goedhart, A. (1973). The use of structured learning for empathy enhancement in paraprofessional psychotherapist training. Journal of Community Psychology, 1(2), 168-173.

Goldstein, A. P., Michaels, G. Y. (1985). Empathy: Development, training, and consequences. Erlbaum Associates, Incorporated, Lawrence.

Hare, R. D., Clark, D., Grann, M., & Thornton, D. (2000). Psychopathy and the predictive validity of the PCL-R: An international perspective. Behavioral Sciences & The Law, 18(5), 623-645.

Haynes, J.-D., Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686-691.

Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20(4), 721-733.

Hoffmann, S., & Falkenstein, M. (2008). The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One, 3(8), e3004.

Jackson, P. L., Brunet, E., Meltzoff, A. N., Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752-761.

Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.

Jones, A. P., Happé, F. G., Gilbert, F., Burnett, S., & Viding, E. (2010). Feeling, caring, knowing: different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. Journal of Child Psychology and Psychiatry, 51(11), 1188-1197.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.

Kosslyn, S. M., Thompson, W. L., Kim, I. J., Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378(6556), 496-498.

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Retrieved from

Lewis, N. (1991). Word power made easy. Simon and Schuster. New York: Pocket Books.

Lynam, D. R., Whiteside, S., Jones, S. (1999). Self-reported psychopathy: A validation study. Journal of Personality Assessment, 73(1), 110-132.

Martin, L. J., Hathaway, G., Isbester, K., Mirali, S., Acland, E. L., Niederstrasser, N., et al. (2015). Reducing social stress elicits emotional contagion of pain in mouse and human strangers. Current Biology, 25(3), 326-332.

Maziyar, M., Yunus, J., Utama, N. P. (2015). The Effect of Ramadan fasting on Visual spatial attention through food stimuli. Research Journal of Medical Sciences, 9(5), 279-288.

McDonald, N. M., Mesinger, D. S. The development of empathy: How, When, and why Free will, emotions, and moral actions. Philosophy and Neuroscience in Dialogue: In Press.

Molavi, M., Yunus, J., & Utama, N. P. (2016). The effect of Ramadan fasting on spatial attention through emotional stimuli. Psychology Research and Behavior Management, 9, 105-114.

Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H.-J., Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. The Journal of Neuroscience, 27(42), 11431-11441.

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5-12.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.

Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson, R., et al. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.

Schwaber, E. A. (2010). Reflections on Heinz Kohut's last presentation,“On Empathy,” 1981: Its Impact On My Own Pathway. International Journal of Psychoanalytic Self Psychology, 5(2), 160-176.

Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157-1162.

Utama, N. P., Takemoto, A., Koike, Y., Nakamura, K. (2008). Serial processing of emotional type and intensity: Evidence from an ERP Study. In M. Ishikawa, K. Doya, H. Miyamoto & T. Yamakawa (Eds.), Neural Information Processing: 14th International Conference, ICONIP 2007, Kitakyushu, Japan, November 13-16, 2007, Revised Selected Papers, Part II (pp. 960-968). Berlin, Heidelberg: Springer Berlin Heidelberg.

Utama, N. P., Takemoto, A., Koike, Y., Nakamura, K. (2009). Phased processing of facial emotion: an ERP study. Neuroscience Research, 64(1), 30-40.

Utama, N. P., Takemoto, A., Nakamura, K., Koike, Y. (2009). Single-trial EEG data to classify type and intensity of facial emotion from P100 and N170. Paper presented at the International Joint Conference on Neural Networks (IJCNN 2009). 14-19 June 2009. Atlanta, GA, USA: IEEE, 3156-3163. Waite, M., Hawker, S. (2009). Compact Oxford dictionary and thesaurus. USA: Oxford University Press.

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72(8), 2031-2046.

Zeki, S., Watson, J., Lueck, C., Friston, K. J., Kennard, C., Frackowiak, R. (1991). A direct demonstration of functional specialization in human visual cortex. The Journal of Neuroscience, 11(3), 641-649.