Copper-, Lead- and Mercury-Induced Changes in Maximum Quantum Yield, Chlorophyll A Content and Relative Growth of Three Malaysian Green Macroalgae

Authors

  • Hazlina Ahamad Zakeri
  • Luqman Abu Bakar

DOI:

https://doi.org/10.11113/mjfas.v9n1.76

Abstract

In this study, we reported on the responses of three Malaysian green algae, Caulerpa racemosa, Caulerpa lentillifera and Ulva reticulata against three heavy metals, copper (Cu), lead (Pb) and mercury (Hg). Responses were determined as maximum quantum yield (Fv/Fm) for photosynthetic quantum efficiency, chlorophyll (chl) a content and relative growth measured as changes in fresh weight. The algae were exposed for 8h in two concentrations of metals, which were 1 mg/L and 2 mg/L. In general, all algae were severely affected by the presence of Hg compared to the other two metals. Fv/Fm of the algae was significantly reduced to the lowest of 18% in 1 mg/L Hg as observed in C. racemosa while the lowest for Cu and Pb was 29% and 41%, respectively, also observed in similar algal species. All algae showed an undetected value of Fv/Fm when concentration of Hg was increased to 2 mg/L. An increase in Fv/Fm was observed for C. lentillifera in 1 mg/L of Cu and Pb but the value showed a reduction when the concentration of both metals was increased to 2 mg/L. Among the algae, Fv/Fm of C. racemosa was severely affected by the presence of all metals particularly at 2 mg/L where it showed undetected value. An increase in the content of chl a was observed in C. racemosa and C. lentillifera for each metals at both concentrations while a decrease in the content was observed in U. reticulata. Algal relative growth was negatively affected by the presence of metals with Hg showed the strongest effect. However, some algae showed a positive effect of Pb on their growth.

References

J. Wang, and C. Chen, Biotech. Adv., 27 (2009), 195-226.

Department of Environment, Malaysia (DOE), Malaysia Environmental Quality Report 2011, 2011, 87 pp.

D. Beyersmann, and A. Hartwig, Arch. Toxicol., 82 (2008), 493-512.

L.R. Andrade, M. Farina, and G.M. Amado Filho,Ecotoxicol. Environ. Safe.,58 (2004),117–125.

B.T.A. Bossuyt, and C.R. Janssen, Aquat. Toxicol., 68 (2004),61-74.

K. Shakya, M.K. Chettri, and T. Sawidis,Arch. Environ. Contam. Toxicol., 54 (2008), 412-21.

C. Lamai, M. Kruatrachue, P. Pokethitiyook, E.S. Upatham,and V. Soonthornsarathool,Sci. Asia,31 (2005), 121–127.

B. Pawlik-Skowronska,Environ. Pollut.,119 (2002),119–227.

R. Azevedo, and E. Rodriguez,J. Bot., vol. 2012, Article ID 848614, 6 pages. doi:10.1155/2012/848614.

R. Ofer, A. Yerachmiel, and Y. Shmuel, Water Environ. Res. 75 (2003), 246-251.

S. Klimmek, H.J. Stan, A. Wilke, G. Bunke, and R. Buchholz,Environ. Sci. Technol., 35 (2001), 4283-4288.

P. Ostapczuk, M. Burow, K. May, C. Mohl, M. Froning, B. Subenbach, E. Waidmann, and H. Emons, Chemosphere, 34 (1997),2049-2058.

A.A. Al-Homaidan, A. Al-Ghanayem, andA.H. Alkhalifa, Intern. J. Wat. Res. Ar. Environ.,1 (2011),10-15.

I. Sánchez-Rodríguez, M.A. Huerta-Diaz, E. Choumiline, O. Holguin-Quinones, and J.A. Zertuche-Gonzalez,Environ. Pollut., 114 (2001),145–160.

S. Rajamani, S. Siripornadulsil, V. Falcao, M. Torres, P. Colepicolo and R. Sayre, Adv. Exp. Med. Biol. 616 (2007), 99-109. [16] W.P. Inskeep, and P.R. Bloom,Plant Physiol., 77 (1985), 483-485.

K. Maxwell, and G.N. Johnson, J. Exp. Bot., 51 (2000), 659-668. [18] K. Sbihi, O. Cherifi, A. El gharmali, B. Oudra, and F. Aziz,J. Mater. Environ. Sci.,3 (2012), 497-506.

A.J. Miao, W.X. Wang, and P. Juneau,Environ. Toxicol. Chem., 24 (2005), 2603-2611.

H. Küpper, I. Sétlík, M. Spiller, F.C. Küpper, and O. Prásĭl, J. Phycol., 38 (2002), 429-441.

E. Mateos-Naranjo, S. Redondo-Gomez, J. Cambrolle, and M.E. Figueroa,Mar. Environ. Res.,66 (2008), 459–465.

I. Yruela, M. Alfonso, M. Baron, and R. Picorel,Physiol. Plant., 110 (2000), 551–557.

S. Connan, and D.B. Stengel, Aquat. Toxicol., 104 (2011), 97-107.

R.S. Sengar, M. Gautam, R.S.Sengar, S.K. Garg, K. Sengar, and R. Chaudhary, Rev. Environ. Contam. Toxicol., 196 (2008), 73-93.

C.M. Lu, C.W. Chau, and J.H. Zhang, Chemosphere,41 (2000), 191-196.

G.L. Kukarskikh, E.E. Graevskaia, T.E. Krendeleva, K.N. Timofeedv, and A.B. Rubin, Biofizika, 48 (2003), 853-859.

I. Szivák, R. Behra, and L. Sigg,J. Phycol., 45 (2009), 427-435. [28] S. Shcolnick, and N. Keren,Plant Physiol.,141 (2006),805-810. [29] P.S. Rekha, and S.A. Mastan,J. Herb. Med. Toxicol., 5 (2011), 47-50.

Z. Krupa, and T. Baszynski, Acta Physiol. Plant., 17 (1995), 177-190.

K. Knauer, R. Behra, and L. Sigg,Environ. Toxicol. Chem.,16 (1997), 220- 229.

C. Janssen, and D. Heijrick,Environ. Contam. Toxicol., 178 (2003), 23-52.

P. Soto, H. Gaete, and M.E. Hidalgo,Lat. Amer. J. Aquat. Res.,39 (2011), 280-285.

T. Han, S.H. Kang, J.S. Park, and H.K. Lee,Aquat. Toxicol., 86 (2008), 176-194.

X. Zhang, E.H. Ervin, and R.E. Schmidt,Hortscience, 130 (2005), 836–841.

I.R. Mor, S.J. Gokani, and S.V. Chanda,J. Plant Nutr.,25 (2002), 843-860.

Z.S. Zhou, K. Guo, A.A. Elbaz, and Z.M. Yang,Environ. Exp. Bot.,65 (2009), 27–34.

M. Israr, S. Sahi, R. Datta, and D. Sarkar, Chemosphere,65 (2006), 591–598.

A. Elbaz, Y.Y. Wei, Q. Meng, Q. Zheng, and Y.Z. Yang, Ecotoxicol., 19 (2010), 1285–1293.

J.C. Fernandes, and F.S. Henriques, Bot. Rev., 57 (1991), 246-273.

W.S. Jiang, D.H. Liu, and W.Q. Hou, Bioresource Tech., 76 (2001), 9-13.

M.T. Brown, and J.E. Newman, Aquat. Toxicol., 64 (2003), 201-203.

S.O. Eun, H.S. Youn, and Y. Lee, Physiol. Planta., 110 (2000), 357-365.

R. John, P. Ahmad, K. Gadgil, and S. Sharm,Intern. J. Plant Prod., 3 (2009), 65-76.

C. Scheidegger, R. Behra, and L. Sigg, Aquat. Toxicol., 101 (2011), 423-429.

M. Falkowska, A. Pietryczuk, A. Piotrowska, A. Bajguz, A. Grygoruk, and R. Szerpak, Polish J. Environ. Stud. 20 (2011), 53-59.

Downloads

Published

25-01-2013