# Polycyclic transformations of crystallographic groups with quaternion point group of order eight

## DOI:

https://doi.org/10.11113/mjfas.v13n4.752## Keywords:

Crystallographic groups, polycyclic presentations, quaternion, point group## Abstract

Exploration of a group's properties is vital for better understanding about the group. Amongst other properties, the homological invariants including the nonabelian tensor square of a group can be explicated by showing that the group is polycyclic. In this paper, the polycyclic presentations of certain crystallographic groups with quaternion point group of order eight are shown to be consistent; which implies that these groups are polycyclic.## References

Brown, R., Johnson, D. L. and Robertson, E. F. 1987. Some computations of non-abelian tensor products of groups. Journal of Algebra, 111: 177-202.

Kappe. L. C., Sarmin, N. H. and Visscher, M. P. 1999. 2-generator 2- groups of class 2 and their nonabelian tensor squares. Glasgow Matematical Journal, 41: 417-430.

Mohd Ali, N. M., Sarmin, N. H. and Kappe, L. C. 2009, 'Homological functors of infinite non-abelian 2-generator groups of nilpotency class 2', 5th Asian Mathematical Conference, 2009 Putra World Trade Centre, Kuala Lumpur, Malaysia, pp. 71-76.

Ramachandran, V. A. R., Sarmin, N. H. and Mohd Ali, N. M. 2008, 'The nonabelian tensor square and homological functors of S3', Regional Annual Fundamental Science Seminar, 2008 Ibnu Sina Institute, UTM Skudai, Johor, Malaysia, pp. 350-354.

Rashid, S., Sarmin, N. H., Erfanian, A., Mohd Ali, N. M. and Zainal, R. 2013. On the nonabelian tensor square and capability of groups of order 8q. Indagationes Mathematicae, 24(3): 581-588.

Zainal, R., Mohd Ali, N. M., Sarmin, N. H. and Rashid, S. 2013, 'The Schur multiplier and nonabelian tensor square of some groups of p-power order', AIP Conf. Proc. 1522: 1039-1044.

Masri, R. 2009. The nonabelian tensor squares of certain Bieberbach groups with cyclic point group of order two. Universiti Teknologi Malaysia, Ph.D. Thesis.

Mat Hassim, H. I., Sarmin, N. H., Mohd Ali, N. M., Masri, R. and Mohd Idrus, N. 2014. The exterior squares of some crystallographic groups. Jurnal Teknologi, 20: 85-88.

Mohd Idrus, N., Wan Mohd Fauzi, W. N. F., Masri, R., Tan, Y. T., Sarmin, N. H. and Mat Hassim, H. I. 2015. The central subgroup of nonabelian tensor square of the third Bieberbach group with dihedral point group. International Journal of Applied Mathematics and Statistics. 53(4): 104-109.

Wan Mohd Fauzi, W. N. F., Mohd Idrus, N., Masri, R., Tan, Y. T., Sarmin, N. H. and Mat Hassim, H. I. 2015. A homological functor of the second Bieberbach group with dihedral point group. International Journal of Applied Mathematics and Statistics, 53(5): 73-76.

Tan, Y. T., Masri, R., Mohd Idrus, N., Wan Mohd Fauzi, W. N. F., Sarmin, N. H. and Mat Hassim, H. I. 2016. The nonabelian tensor square of a Bieberbach group with symmetric point group of orders. Jurnal Teknologi, 78(1): 189-193.

Torsion Free Space Groups. Retrieved March, 10, 2014 from (http://wwwb.math.rwth-aachen.de/carat/bieberbach.html).

Blyth, R. D. and Morse, R. F. 2009. Computing the nonabelian tensor squares of polycyclic groups. Journal of Algebra, 2139-2148.

Mohammad, S. A., Sarmin, N. H. and Mat Hassim, H. I. 2016. Polycyclic presentations of the torsion free space group with quaternion point group of order eight. Jurnal Teknologi, 77(33): 151-156.

Mohammad, S. A., Sarmin, N. H. and Mat Hassim, H. I. 2015, 'Consistent polycyclic presentation of a Bieberbach group with a nonabelian point group', 7th Seams UGM International Conference on Mathematics and Its Applications 2015: Enhancing the Role of Mathematics in Interdisciplinary Research, AIP Conf. Proc. Universitas Gadjah Mada, Yogyakarta, Indonesia, pp. 020012(1)-020012(6).

Eick, B and Nickel, W. 2008. Computing schur multiplicator and tensor square of polycyclic group. Journal of Algebra, 320(2): 927-944.