Theoretical investigation of the lattice energy of urea: Insight from DFT using systematic cluster method

Authors

  • Nur Najwa Alyani Mohd Nabil Universiti Teknologi MARA
  • Lee Sin Ang Universiti Teknologi MARA

DOI:

https://doi.org/10.11113/mjfas.v13n4.744

Keywords:

Systematic Cluster Method, Urea, Dispersion Correction, Lattice Energy, Geometrical Counterpoise

Abstract

Lattice energy is the energy needed to form crystals of a compound from the individual molecules. It is related to the stability of a compound in the solid state. In this study, systematic cluster method has been applied to obtain the lattice energy of urea. Using this method, the effect of solid state environment is included in a systematic way. Starting from the small clusters containing a few molecules, the largest cluster we studied contains 84 molecules. In order to improve the results from the cluster method using Gaussian 09 program, correction using the D3BJ program was included. The results show that, when compared to the experimental value, the lattice energies obtained were under-estimated for all the theoretical levels considered. Generally, application of the systematic cluster method shows decrease in calculated lattice energy as more molecules were included in the clusters and becomes closer to the experimental value of urea. Of all the levels considered, B3LYP/DEF2-TZVP with correctional terms provides the closest value to the one from the experiment.

Author Biographies

Nur Najwa Alyani Mohd Nabil, Universiti Teknologi MARA

Faculty of Applied Sciences

Lee Sin Ang, Universiti Teknologi MARA

Faculty of Applied Sciences

References

Cruz-Cabeza, A. J., & Bernstein, J. 2014. Conformational Polymorphism. Chem. Rev. 114, 2170.

Bauer, J., Spanton, S., Henry, R., Quick, J., Dziki, W., Porter, W., & Morris, J. 2001. Ritonavir: An Extraordinary Example of Conformational Polymorphism. Pharm. Res. 18, 859.

Feng, S., & Li, T. 2006. Predicting Lattice Energy of Organic Crystals by Density Functional Theory with Empirically Corrected Dispersion Energy. J. Chem. Theory Comput. 2, 149.

Sousa, S. F., Fernandes, P. A., & Ramos, M. J. 2007. General Performance of Density Functionals. J. Phys. Chem. A. 111, 10439.

Kohn, W., Becke, A. D., & Parr, R. G. 1996. Density Functional Theory of Electronic Structure. J. Phys. Chem. 100, 12974.

Pérez-Jordá, J., & Becke, A. D. 1995. A Density-Functional Study of van der Waals Forces: Rare Gas Diatomics. Chem. Phys. Lett. 233, 134.

Beran, G. J. O. 2016. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 116, 5567.

Nangia, A. 2006. Pseudopolymorph: Retain This Widely Accepted Term. Cryst. Growth Des. 6, 2.

Dennington, R., Keith, T. A., & Millam, J. M. 2006. GaussView 2016. (Version 4.1). Shawnee Mission, KS: Semichem Inc.

Grimme, S., Ehrlich, S., & Goerigk, L. 2011. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 32, 1456.

Grimme, S., Huenerbein, R., & Ehrlich, S. 2011. On the Importance of the Dispersion Energy for the Thermodynamic Stability of Molecules. Chem. Phys. Chem. 12, 1258.

Christensen, A. S., Kubař, T., Cui, Q., & Elstner, M. 2016. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chem. Rev. 116, 5301.

Boys, S. F., & Bernardi, F. 1970. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 19, 553.

Kruse, H., & Grimme, S. 2012. A Geometrical Correction for the Inter- and Intra-Molecular Basis Set Superposition Error in Hartree-Fock and Density Functional Theory Calculations for Large Systems. J. Chem. Phys. 136, 154101.

Zavodnik, V., Stash, A., Tsirelson, V., de Vries, R., & Feil, D. 1999. Electron Density Study of Urea Using TDS-Corrected X-ray Diffraction Data: Quantitative Comparison of Experimental and Theoretical Results. Acta Crystallogr. Sect. B. 55, 45.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., & Wood, P. A. 2008. Mercury CSD 2.0 - New Features For the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 41, 466.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G, et al. 2009. Gaussian 09. Wallingford, CT, USA: Gaussian, Inc.

Spoliti, M., Pieretti, A., Bencivenni, L., & Sanna, N. 1997. Theoretical Study of the Stable C2 and CS Symmetry Isomers of Urea. Electron. J. Theor. Ch. 2, 149.

Civalleri, B., Doll, K., & Zicovich-Wilson, C. M. 2007. Ab Initio Investigation of Structure and Cohesive Energy of Crystalline Urea. J. Phys. Chem. B. 111, 26.

William Acree, J., & Chickos, J. S. 2010. Phase Transition Enthalpy Measurement of Organic and Organimetallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010. J. Phys. Chem. Ref. Data. 39, 043101.

Sendil, K., Ugurlu, G., Çaliskan, H., Yilmaz, M., & Sahin, E. 2016. Synthesis, Characterization, Non-Linear Optical, Molecular Electrostatic Potential and HOMO-LUMO Analysis Using DFT Study of Novel Chiral Symmetric Schiff Bases. Asian J. Chem. 28, 1841.

Downloads

Published

26-12-2017