Free convection flow of micropolar fluids over an oscillating vertical plate
DOI:
https://doi.org/10.11113/mjfas.v13n4.738Keywords:
Micropolar Fluids, Microrotaions, Free Convection, Exact SolutionsAbstract
An analytical investigation is carried out to study the unsteady free convection flow of micropolar fluids over an oscillating vertical plate. Wall couple stress is engaged at the bounding plate with isothermal temperature. Problem is modelled in terms of coupled partial differential equations together with some physical conditions and then written in non-dimensional form. Exact solutions are obtained using the Laplace transform technique. Analytical results of velocity, microrotation and temperature are plotted in graphs and discussed for various embedded parameters. Excellent validation of present results is achieved with existing results in literature. It is observed that, the velocity is smaller for micropolar fluids than for Newtonian fluids.
References
Nur, H., Hayati, F., Hamdan, H. 2007. On the location of different titanium sites in Ti-OMS-2 and their catalytic role in oxidation of styrene. Catal. Commun. 8, 2007-2011.
Nur, H., Guan, L. C., Endud, S., Hamdan, H. 2004. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett. 58, 12-13, 1971-1974.
Contescu, C. I. (2009). Dekker encyclopedia of nanoscience and nanotechnology. (2nd Edition). Boca Raton, FL : CRC Press.
Riley, D. 1992. Industrial relations in Australian education in Contemporary Australasian industrial relations. Proceedings of the sixth AIRAANZ conference, ed. D Blackmur. 29 January-2 February 1992. Sydney, 124-140.
Aghion, P., Durlauf, S. (eds). 2005. Handbook of economic growth, Amsterdam: Elsevier. Available from: Elsevier books. [4 November 2004].
Eringen, A. C. 1966. Theory of Micropolar Fluids. J. Math. Mech. 1-18.
Ariman, T., Turk, M. A. and Sylvester, N. D. 1973. Microcontinuum fluid mechanics-A Review. Inter. J. Eng. Sci. 905-930.
Eringen, A. C. (2001). Microcontinuum Field Theories II: Fluent Media. New York: Springer.
Lukaszewicz, G. (1999). Micropolar Fluids: Theory and Applications. Basel: Springer.
R. Nazar et al., 2002. Free convection boundary layer on an isothermal sphere in a micropolar fluid. Inter. Commun. Heat Mass Transf. 377-386.
Cheng, C. Y. 2008. Natural convection heat and mass transfer from a sphere in micropolar fluids with constant wall temperature and concentration. Inter. Commun.Heat Mass Transf. 750-755.
Sherief, H., Faltas, M. S. and Ashmawy, E. A. 2011. Exact solution for the unsteady flow of a semi-infinite micropolar fluid. Acta Mech. Sin. 354-359.
El-Hakiem, M. A. 2014. Heat transfer from moving surfaces in a micropolar fluid with internal heat generation. J. Eng. Appl. Sci. 30-36.
Hassanien, I. A., Bakier, A. J. and Gorla, R. S. R. 1997. Natural convection boundary layer flow of a micropolar fluid. ZAMM, 751-755.
Ishak, A., Nazar, R. and Pop, I. 2008. Heat transfer over a stretching surface with variable heat flux in micropolar fluids. Phys. Lett. A, 559–561.
Lok, Y. Y., Amin, N., Campean, D. and Pop, I. 2005. Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. Inter. J. Numer. Methods Heat Fluid Flow, 654–670.
Gorla, R. S. R. 1983. Micropolar boundary layer flow at stagnation on a moving wall. Inter. J. Eng. Sci. 25-33.
Damseh, R. A., Al-Azab, T. A., Shannak, B. A. and Husein, M. A. 2007. Unsteady natural convection heat transfer of micropolar fluid over a vertical surface with constant heat flux. Turk. J. Eng. Envir. Sci. 225-233.
Khalid, A., Khan, I., Khan, A. and Shafie, S. 2015. Conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple stress. AIP Ad. 127125.
Abo-Dahab, S. M. and Mohamed, R. A. 2013. Unsteady flow of rotating and chemically reacting MHD micropolar fluid in slip-flow regime with heat generation. Inter. J. Thermophys. 2183-2208.
Chaudhary, R. C and Jain, A. 2007. Combined heat and mass transfer effects on MHD free convection flow past an oscillating plate embedded in porous medium. Rom. J. Phys. 505–524.