Biomolecular aspects of second order limit language

Authors

  • Muhammad Azrin Ahmad Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia http://orcid.org/0000-0003-2542-3029
  • Nor Haniza Sarmin Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Firdaus Abdul Wahab Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fong Wan Heng Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yuhani Yusof Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v14n1.727

Keywords:

DNA, mathematical modelling, splicing system, splicing language, limit language

Abstract

The study on the recombinant behavior of double-stranded DNA molecules has led to the mathematical modelling of DNA splicing system. The interdisciplinary study is founded from the knowledge of informational macromolecules and formal language theory. A splicing language is resulted from a splicing system. Recently, second order limit language, a type of the splicing language, has been extensively explored. Before this, several types of splicing languages have been experimentally proven. Therefore, in this paper, a laboratory experiment was conducted to validate the existence of a second order limit language. To accomplish it, an initial strand of double-stranded DNA, amplified from bacteriophage lambda, was generated through polymerase chain reaction to generate thousands of copies of double-stranded DNA molecules. A restriction enzyme and ligase were added to the solution to complete the reaction. The reaction mixture was then subjected to polyacrylamide gel electrophoresis to separate biological macromolecules according to their sizes. A mathematical model derived at the early study was used to predict the approximate length of each string in the splicing language. The results obtained from the experiment are then used to verify the mathematical model of a second order limit language. This study shows that the theory on the second order limit language is biologically proven hence the model has been validated.

Author Biographies

Muhammad Azrin Ahmad, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

Senior Lecturer,

Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang,
Lebuhraya Tun Razak, 26300 Gambang
Kuantan, Pahang Darul Makmur, Malaysia

Nor Haniza Sarmin, Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Professor,

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Mohd Firdaus Abdul Wahab, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Senior Lecturer,

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Fong Wan Heng, Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Senior Lecturer,

Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Yuhani Yusof, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia

Senior Lecturer,

Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang,
Lebuhraya Tun Razak, 26300 Gambang
Kuantan, Pahang Darul Makmur, Malaysia

References

I. E. Alcamo, DNA Technology: The Awesome Skill (2nd ed.), USA: Academic Press, 2001.

G. Paun, G. Rozenberg, A. Salomaa, DNA computing: New computing paradigms, New York: Springer-Verlag Berlin Heidelberg, 1998.

S. S. Purohit, Biotechnology: Fundamentals and applications, Jodhpur, India: Agrobios, 2005.

M. Wink, An introduction to molecular biotechnology, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

T. Head, Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol., vol. 49, pp. 737–759, 1987.

P. Linz, An introduction to formal languages and automata (5th ed.), USA: Jones and Bartlett, LLC, 2012.

Y. Yusof, N. H. Sarmin, T. E. Goode, M. Mahmud, W. H. Fong, in: Abdullah R., Khader A. T., Venkat I., Wong L. P., Subramaniam K. G. (eds.), An extension of DNA splicing system, IEEE Conference Proceedings: 6th International Conference on Bio-Inspired Computing: Theories and Application (BIC-TA 2011), September 27-29, 2011, California, USA: IEEE Computer Society, 2011, p. 246-248.

Y. Yusof, N. H. Sarmin, T. E. Goode, M. Mahmud, W. H. Fong, Hierarchy of certain types of DNA splicing systems. Int. J. Mod. Phys. Conf. Ser., vol. 9, pp. 271-277, 2012.

E. Laun, K. J. Reddy, in: Rubin H., Wood D. H. (eds.), Wet splicing system, DIMAC Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Rhode Island, USA, 1999, p. 73-83.

W. H. Fong, N. H. Sarmin, Mathematical modelling of splicing systems, Proceedings of the 1st International Conference on Natural Resources Engineering & Technology, July 24-26, 2006, Putrajaya, Malaysia, 2006, p. 524-527.

Y. Yusof, W. L. Lim, T. E. Goode, N. H. Sarmin, W. H. Fong, M. F. A. Wahab, in: Ramli M. F., Junoh A. K., Roslan N., Masnan M. J., Kharuddin M. H. (eds), Molecular aspects of DNA splicing system, International Conference on Mathematics, Engineering and Industrial Applications 2014 (ICoMEIA 2014), AIP Publishing, vol. 1660, 2015, p. 050045.

A. Colosimo, A. D. Luca, Special factors in biological strings. J. Theor. Biol., vol. 204, pp. 29–46, 2000.

E. Goode, D. Pixton, in: Janoska N, Paun Gh., Rozenberg G. (eds), Splicing to the limits aspects of molecular computing, New York: Springer-Verlag Berlin Heidelberg, 2004, p. 189.

M. A. Ahmad, N. H. Sarmin, W. H. Fong, Y. Yusof, in: Zain WZW, Dzul-Kifli S. C., Razak F. A., Ishak A. (eds), An extension of first order limit language, Proceedings of the 3rd International Conference on Mathematical Sciences, AIP Conf. Proc., vol. 1602, 2014, p. 627-631.

S. Rozen, H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers. In: Misener S, Krawetz SA (eds) Bioinformatics Methods and Protocols, Totowa, New Jersey: Humana Press, 1999, p. 365-386.

D. R. Gangaraj, S. Shetty, M. Govindaiah, C. Nagaraja, S. Byregowda, M. Jayashankar, Molecular characterization of kappa-casein gene in buffaloes, ScienceAsia, vol. 34, pp. 435–439, 2008.

Downloads

Published

08-03-2018