An overview of transboundary haze studies: The underlying causes and regional disputes on Southeast Asia Region


  • Ku Mohd Kalkausar Ku Yusof Universiti Sultan Zainal Abidin (UniSZA)
  • Azman Azid Universiti Sultan Zainal Abidin (UniSZA)
  • Mohd Saiful Samsudin Universiti Sultan Zainal Abidin (UniSZA)
  • Mohd. Asrul Jamalani Universiti Putra Malaysia (UPM)



Haze phenomenon, air pollution, transboundary pollution, smoky haze, deforestation


Air pollution is now ranked as the ninth worst scenario globally and is expected to be the most serious global issue by the year 2050. The objective of this study is to get information regarding transboundary haze phenomenon blanketing the Southeast Asia that has been happened for decades ago. Various techniques such as qualitative and quantitative techniques have been applied to get the informative input detailed out by previous researchers. The finding shows that that the smoky haze occurred in the dry season, which at this point, the activities of cleaning and ground maintenance being carried out by Indonesian farmers. Indonesia is one of the countries drastically affected by deforestation process where their forest loss is 2% yr-1 which is equal to 1.9 million ha each year. The establishment of ASEAN in 2002 would be a turning point in addressing on more reliance on prevention and cooperation than establishing a liability regime or adopting legal instruments to protect the environment. However, the reflection of so-called ‘ASEAN Way', which preferred on non-interference in other states has inhibited the reliance on strong regional efforts in executing a more effective action in order to address and combat the transboundary haze pollution in Southeast Asia.

Author Biographies

Ku Mohd Kalkausar Ku Yusof, Universiti Sultan Zainal Abidin (UniSZA)

Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin

Azman Azid, Universiti Sultan Zainal Abidin (UniSZA)

Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin

Mohd Saiful Samsudin, Universiti Sultan Zainal Abidin (UniSZA)

Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin

Mohd. Asrul Jamalani, Universiti Putra Malaysia (UPM)

Faculty of Environmental Studies, Universiti Putra Malaysia (UPM)


Abas, M. R. B., Oros, D. R., and Simoneit, B. R. T. (2004). Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere. 55(8): 1089–1095.

Adams, M. A. (2015). Forest Ecology and Management Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. Forest Ecology and Management. 294(2013): 250–261.

Afriyanti, D., Kroeze, C., and Saad, A. (2016). Science of the Total Environment Indonesia palm oil production without deforestation and peat conversion by 2050. Science of the Total Environment, 557–558: 562–570.

Afroz, R., Hassan, M. N., and Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research. 92(2): 71–77.

Aghamohammadi, N., Nik Sulaiman, N. M., and Aroua, M. K. (2011). Combustion characteristics of biomass in SouthEast Asia. Biomass and Bioenergy. 35(9): 3884–3890.

Ahmed, M., Guo, X., and Zhao, X. M. (2016). Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia. Atmospheric Environment. 141: 219–229.

Alencar, A., Nepstad, D.C., and Vera-Diaz, M. D. (2006). Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions. 10(6): 1–17.

ASEAN (2002). ASEAN Agreement on Transboundary Haze Pollution. Retrieved from

Ash, K. D., and Matyas, C. J. (2012). The influences of ENSO and the subtropical Indian Ocean Dipole on tropical cyclone trajectories in the southwestern Indian Ocean. International Journal of Climatology. 32(1): 41–56.

Ashikin, N., Mabahwi, B., Ling, O., Leh, H., Omar, D. (2014). Human Health and Wellbeing: Human health effect of air pollution. Procedia - Social and Behavioral Sciences. 153: 221–229.

As-syakur, A. R., Adnyana, I. W. S., Mahendra, M. S., Arthana, I. W., Merit, I. N., Kasa, I. W., Ekayanti, N. W., Nuarsa, I. W., Sunarta, I. N. (2014). Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). International Journal of Climatology. 34(15): 3825–3839.

Ayers, G. P., Peng, L. C., Fook, L. S., Kong, C. W., Gillett, R. W., and Manins, P. C. (2000). Atmospheric concentrations and deposition of oxidised sulfur and nitrogen species at Petaling Jaya, Malaysia, 1993-1998. Tellus, Series B: Chemical and Physical Meteorology. 52(1): 60–73.

Balasubramanian, R. (2003). Comprehensive characterization of PM2.5 aerosols in Singapore. Journal of Geophysical Research. 108(D16): 4523.

BBC. (2015). China Smog: Beijing residents buy fresh air from Canada. Retrieved November 21, 2015, from

Betha, R., Pradani, M., Lestari, P., Joshi, U. M., Reid, J. S., Balasubramanian, R. (2013). Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmospheric Research, 122(May 1998): 571–578.

Binternagel, N. B., Juhrbandt, J., Koch, S., Schwarze, S., Barkmann, J., and Faust, H. (2010). Tropical Rainforests and Agroforests under Global Change. Tropical Rainforests and Agroforests under Global Change Ecological and Socioeconomic Valuations. 6: 351–375.

Brockhaus, M., Obidzinski, K., Dermawan, A., Laumonier, Y., Luttrell, C. (2012). An overview of forest and land allocation policies in Indonesia: Is the current framework sufficient to meet the needs of REDD+? Forest Policy and Economics. 18: 30–37.

Budi, L., Dharmawan, A. H., Nasdian, F. T., Ramdhoni, S. (2016). Historical forest fire occurrence analysis in Jambi Province during the period of 2000 – 2015: its distribution & land cover trajectories. Procedia Environmental Sciences. 33: 450–459.

Casson, A. (2000). The Hesitant Boom: Indonesia’s Oil Palm Sub-Sector and Political Change, 62(29), 1–75. Retrieved from

Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriarte, M., DeFries, R. (2016). Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change. 39: 205–219.

Davies, S. J., and Unam, L. (1999). Smoke-haze from the 1997 Indonesian forest fires: Effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecology and Management. 124(2–3): 137–144. (99)00060-2

Demuzere, M., Trigo, R. M., Vila-Guerau de Arellano, J., and van Lipzig, N. P. M. (2008). The impact of weather and atmospheric circulation on O3 and PM10 levels at a mid-latitude site. Atmospheric Chemistry and Physics Discussions. 8: 21037–21088.

Department of Environmental, Malaysia. (2015). Haze : Air Pollution Phenomena.

Dholakia, H. H., Purohit, P., Rao, S., Garg, A. (2013). Impact of current policies on future air quality and health outcomes in Delhi, India. Atmospheric Environment. 75: 241–248.

Dotse, S. Q., Dagar, L., Petra, M. I., and De Silva, L. C. (2016). Evaluation of national emissions inventories of anthropogenic air pollutants for Brunei Darussalam. Atmospheric Environment. 133: 81–92.

Fairos, W., Yaacob, W., Suhana, N., Noor, M., Ili, N., Bakar, C. A., Taib, F. (2016). Journal of Acute Disease, 5(3): 227–231.

FAO. (2010). Global Forest Resources Assessment. Rome.

Field, R. D., Wang, Y., Roswintiarti, O., and Guswanto. (2004). A drought-based predictor of recent haze events in western Indonesia. Atmospheric Environment. 38(13): 1869–1878.

Forsyth, T. (2014). Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and Malaysia. Global Environmental Change. 25(1): 76–86.

Fujii, Y., Kawamoto, H., Tohno, S., Oda, M., Iriana, W. (2015). Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds. Atmospheric Environment. 110: 1–7.

Gomez, E. T. (2009). The rise and fall of capital: Corporate Malaysia in historical perspective. Journal of Contemporary Asia. 39(3): 345–381.

Groot, W. J. De, Field, R. D., Brady, M. A., Roswintiarti, O., Mohamad, M. (2007). Development of the Indonesian 465 and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change. 12(1): 165–466 180.

Hamada, Y., Darung, U., Limin, S. H., Hatano, R. (2013). Characteristics of fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia. Atmospheric Environment. 74: 177–181.

Hayasaka, H., Noguchi, I., Putra, E. I., Yulianti, N., Vadrevu, K. (2014). Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution. 195: 257–266.

Haze Action Online. (n.d.) ASEAN on Agreement Tranboundary Haze Pollution. Retrieved November 8, 2016, from

Heil, A., and Goldammer, J. G. (2001). Smoke-Haze Pollution: A Review of the 1997 Episode in Southeast Asia. Regional Environment Change. 2: 24–37.

Herawati, H., and Santoso, H. (2011). Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia. Forest Policy and Economics. 13(4): 227–233.

Heriyanto, E., Syaufina, L., Sobri, M. (2015). Forecasting Simulation of Smoke Dispersion from Forest and Land Fires in Indonesia. Procedia Environmental Sciences. 24: 111–119.

Hong, C.-C., Lu, M.-M., and Kanamitsu, M. (2008). Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. Journal of Geophysical Research. 113(D8): 1–15.

Hu, G. P., Balasubramanian, R., Wu, C. D. (2003). Chemical characterization of rainwater at Singapore. Chemosphere. 51(8): 747–755. (03)00028-6

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A.,Murdiyarso, D.,Main, B., and van Weele, M. (2016). Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Scientific Reports. 6: 26886.

Hyer, E. J., and Chew, B. N. (2010). Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmospheric Environment. 44(11): 1422–1427.

Jones, D. S. (2004). ASEAN Initiatives to combat haze pollution: An assessment of regional cooperation in public policy-making. Asian Journal of Political Science 12(2): 59–77.

Kartawinata, K., Riswan, S., Gintings, A.N., and Puspitojati, T. (2001). An overview of post-extraction secondary forests in Indonesia. Journal of Tropical Forest. 13(4): 621–638.

Keywood, M. D., Ayers, G. P., Gras, J. L., Boers, R., and Leong, C. P. (2003). Haze in the Klang Valley of Malaysia. Atmospheric Chemistry and Physics Discussions. 3(1): 615–653.

Kim, C. H., Park, S. Y., Kim, Y. J., Chang, L. S., Song, S. K., Moon, Y. S., Song, C. K. (2012). A numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia. Atmospheric Environment. 58(x): 35–44.

Kim, M. (2011). Theorizing ASEAN integration. Asian Perspectives. 35(35): 407–435.

Kim, O, N. T., and Leelasakultum, K. (2011). Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Science of the Total Environment. 409(11): 2261–2271.

Koe, L. C. C., Arellano, A. F., McGregor, J. L. (2001). Investigating the haze transport from 1997 biomass burning in Southeast Asia: Its impact upon Singapore. Atmospheric Environment. 35(15): 2723–2734. (00)00395-2

Langmann, B. (2007). A model study of smoke-haze influence on clouds and warm precipitation formation in Indonesia 1997/1998. Atmospheric Environment. 41(32): 6838–6852.

Lee, J. S. H., Jaafar, Z., Tan, A. K. J., Carrasco, L. R., Ewing, J. J., Bickford, D. P., Web, E. L., Koh, L. P. (2016). Toward clearer skies: Challenges in regulating transboundary haze in Southeast Asia. Environmental Science and Policy. 55: 87–95.

Lee, K. H., Kim, Y. J., Kim, M. J. (2006). Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004. Atmospheric Environment. 40(27): 5146–5155.

Lee, S., Ho, C., Gon, Y., Choi, H., Song, C. (2013). Influence of transboundary air pollutants from China on the high- PM 10 episode in Seoul, Korea for the period October 16 L 20, 2008. Atmospheric Environment. 77: 430–439.

Lin, N. H., Sayer, A. M., Wang, S. H., Loftus, A. M., Hsiao, T. C., Sheu, G. R., Hsu, N. C., Tsay, S. C. Chantara, S. (2014). Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives. Environmental Pollution. 195: 292–307.

Mahmud, M. (2013). Assessment of atmospheric impacts of biomass open burning in Kalimantan, Borneo during 2004. Atmospheric Environment, 78: 242–249.

Miettinen, J., Shi, C., and Liew, S. C. (2016). Land covers distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation. 6: 67–78.

Miranowski, J., and Rosburg, A., (2012). Long-term biofuel projections under different oil price scenarios. Agricultural Bio Forum. 16(1): 9.

Mukherjee, P., and Viswanathan, S. (2001). Contributions to CO concentrations from biomass burning and traffic during haze episodes in Singapore. Atmospheric Environment. 35(4): 715–725. 2310(00)00286-7

Muraleedharan, T. R., Radojevic, M., Waugh, A., Caruana, A. (2000). Chemical characterisation of the haze in Brunei Darussalam during the 1998 episode. Atmospheric Environment. 34(17): 2725–2731.

Murdiyarso, D., Lebel, L., Gintings, A. N., Tampubolon, S. M. H., Heil, A., Wasson, M. (2004). Policy responses to complex environmental problems: Insights from a science-policy activity on transboundary haze from vegetation fires in Southeast Asia. Agriculture, Ecosystems and Environment. 104(1): 47–56.

Nara, H., Tanimoto, H., Nojiri, Y., Mukai, H., Machida, T., and Tohjima, Y. (2011). On board measurement system of atmospheric carbon monoxide in the Pacific by voluntary observing ships. Atmospheric Measurement Tehnology 4(11), 2495–2507.

Nichol, J. (1997). Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmospheric Environment. 31(8): 1209–1219. (96)00260-9

Norela, S., Saidah, M. S., and Mahmud, M. (2013). Chemical composition of the haze in Malaysia 2005. Atmospheric Environment. 77: 1005–1010.

Nurdiana, A., Setiawan, Y., Pawitan, H., Budi, L., Ayu, P. (2016). Land changes monitoring using MODIS time-series imagery in peat lands areas, Muaro Jambi, Jambi Province, Indonesia. Procedia Environmental Sciences. 33: 443–449.

Nurhidayah, L. (2012). AsianSIL Working Paper 2012 / 12 The Influence of International Law upon ASEAN Approaches in Addressing Transboundary Haze Pollution in the ASEAN Region, (February).

Oh, H., Ho, C., Kim, J., Chen, D., Lee, S., Choi, Y., Chang, L., and Song, C. (2015). Long-range transport of air pollutants originating in China : A possible major cause of multi-day high-PM 10 episodes during cold season in Seoul , Korea. Atmospheric Environment. 109: 23–30.

Ostermann, K., and Brauer, M. (2001). Air quality during haze episodes and its impact on health. Forest Fires and Regional Haze in Southeast Asia. 41–66.

Palanissamy, A. (2013). Haze Free Air in Singapore and Malaysia – The Spirit of the Law in South East Asia. International Journal of Education and Research. 1(8): 1–8.

Park, S.-U., Cho, J.-H. Park, M.S. (2013). Identification of Visibility Reducing Weather Phenomena Due to Aerosols. Environmental Management and Sustainable Development. 2(1): 126–142.

Payus, C., Abdullah, N., and Sulaiman, N. (2013). Airborne Particulate Matter and Meteorological Interactions during the Haze Period in Malaysia. International Journal of Environmental Science and Development. 4(4): 398–402.

Permadi, D. A., and Kim Oanh, N. T. (2013). Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmospheric Environment. 78: 250–258.

Phairuang, W., Hata, M., and Furuuchi, M. (2016). ScienceDirect Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. JES. 1–13.

Raaschou-nielsen, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z. J., Hoffmann, B., (2016). Particulate matter air pollution components and risk for lung cancer. Environment International, 87: 66–73.

Rahman, H. A. (2013). Haze Phenomenon in Malaysia: Domestic or Transboudry Factor? 3rd International Journal Conference on Chemical Engineering and Its Applications. 597–599.

Rastogi, N., Singh, A., Singh, D., Sarin, M. M. (2014). Chemical characteristics of PM2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environmental Pollution. 184: 563–569.

Reddington, C. L., Yoshioka, M., Balasubramanian, R., Ridley, D., Toh, Y. Y., Arnold, S. R., Spracklen, D. V. (2014). Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environmental Research Letters. 9(9): 94006.

Rein, G., Cohen, S., and Simeoni, A. (2009). Carbon emissions from smouldering peat in shallow and strong fronts. Proceedings of the Combustion Institute. 32 II(2:, 2489–2496.

Rodrigue, J., and Soumonni, O. (2014). Deforestation, foreign demand and export dynamics in Indonesia. Journal of International Economics. 93(2): 316–338.

Ryu, S. Y., Kwon, B. G., Kim, Y. J., Kim, H. H., and Chun, K. J. (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research. 84(4): 362–373.

Sahani, M., Zainon, N. A., Wan Mahiyuddin, W. R., Latif, M. T., Hod, R., Khan, M. F., Tahir, N. M., Chan, C. C. (2014). A case-crossover analysis of forest fire haze events and mortality in Malaysia. Atmospheric Environment. 96: 257–265.

Salafsky, N. (1994). Drought in the rainforest: Effect of the 1991 El-Nino Southern Oscillation event on a rural economy in west Kalimantan, Indonesia. Journal of Climatic Change, 1991(27): 373–396.

Shaadan, N., Jemain, A. A., Latif, M. T., Deni, S. M. (2015). Anomaly detection and assessment of PM10 functional data at several locations in the Klang Valley, Malaysia. Atmospheric Pollution Research. 6(2): 365–375.

Shi, H., Wang, Y., Chen, J., and Huisingh, D. (2015). Preventing smog crises in China and globally. Journal of Cleaner Production. 112: 1261–1271.

Sillapapiromsuk, S., Chantara, S., Tengjaroenkul, U., Prasitwattanaseree, S., and Prapamontol, T. (2013). Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere. 93(9): 1912–1919.

Soleiman, A., Othman, M., Samah, A. a., Sulaiman, N. M., and Radojevic, M. (2003). The Occurrence of Haze in Malaysia: A Case Study in an Urban Industrial Area. Pure and Applied Geophysics. 160(1–2): 221–238.

Sunderlin, W.D., and Resosudarmo, I. A. P. (1996). Rates and causes of deforestation in Indonesia: towards a resolution of the ambiguities. Retrieved from

Tacconi, L., and Vayda, A. P. (2006). Slash and burn and fires in Indonesia: A comment. Ecological Economics. 56: 1–4.

Tan, J., Duan, J., Zhen, N., He, K., Hao, J. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmospheric Research. 167: 24–33.

Tan, K.T., Lee, K.T., Mohamed, A.R., and Bhatia, S. (2009). Palm oil: addressing issues and towards sustainable development. Renewable Sustainable Energy Rev. 13(2): 420–427.

Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I., and Darnaedi, D. (2016). History of forest loss and degradation in Indonesia. Land Use Policy. 57: 335–347.

Vadrevu, K. P. rasad, Ohara, T., and Justice, C. (2014b). Air pollution in Asia. Environmental Pollution. 195, 233–235.

Vadrevu, K. P., Lasko, K., Giglio, L., Justice, C. (2014a). Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environmental Pollution. 195: 245–256.

Van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T.,

Kasibhatla, P. S., Giglio, L. (2008). Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of 625 Sciences of the United States of America. 105(51): 20350–5.

Varkkey, H. (2014). Regional cooperation, patronage and the ASEAN Agreement on transboundary haze pollution. International Environmental Agreements: Politics, Law and Economics. 14(1): 65–81.

Velasco, E., and Rastan, S. (2015). Air quality in Singapore during the 2013 smoke-haze episode over the Strait of Malacca: Lessons learned. Sustainable Cities and Society. 17: 122–131.

Vohland, K., Walz, A., Popp, A., Lotze-campen, H., Cramer, W. (2012). Climate Change, Justice and Sustainability. Climate Change, Justice and Sustainability: Linking Climate and Development Policy. 179–191.

Wang, H., Tan, S. C., Wang, Y., Jiang, C., Shi, G. Yu, Zhang, M. X., Che, H. Z. (2014). A multisource observation study of the severe prolonged regional haze episode over eastern China in January 2013. Atmospheric Environment. 89: 807–815.

Wiwatanadate, P., and Liwsrisakun, C. (2011). Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. International Journal of Hygiene and Environmental Health. 214(3): 251–257.

Zaccone, C., Rein, G., Orazio, V. D., Hadden, R. M., Belcher, C. M., Miano, T. M. (2014). Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica et Cosmochimica Acta. 137: 134–146.

Zhang, Q., Yan, R., Fan, J., Yu, S., Yang, W., Li, P., Wang, S., Chen, B., Liu, W., and Zhang, X. (2015). A heavy haze episode in Shanghai in December of 2013: Characteristics, origins and implications. Aerosol and Air Quality Research. 15(5): 1881–1893.