Structural characterization of sulphate borophosphate glasses containing calcium oxide


  • Yamusa Abdullahi Yamusa Universiti Teknologi Malaysia
  • Rosli Hussin Universiti Teknologi Malaysia
  • Wan Nurulhuda Wan Shamsuri Universiti Teknologi Malaysia
  • Sadiq Abubakar Dalhatu Universiti Teknologi Malaysia
  • Aliyu Muhammad Aliyu Universiti Teknologi Malaysia
  • Ibrahim Bulus Universiti Teknologi Malaysia



Sulphate Borophosphate Glass, X-ray Diffraction, Differential Thermal Analyser, Infrared and Raman Spectroscopy


Increasing demands for better perfoming glasses have lead to current investigating of the sturctural properties of glasses for optimum performances. Calcium sulphate borophosphate glasses of different compositions were prepared using melt quenching technique. The glass forming ability and stability were checked using Differential thermal analyzer (DTA). Density and molar volume had been evaluated and analyzed. From the results of XRD, the absent of discrete and continuous sharp peaks confirmed the amorphous nature of the glass compositions while the results from both IR and Raman revealed the existence of SO4, BO4, BO3, P-O-P and PO43-. Addition of CaSO4 to borophosphate influenced the conversion of the dominant BO3 groups to BO4 groups. The structure of the samples was mainly based on metaphosphate, diphosphate and BO4 units, which became depolymerized with addition of CaSO4 content. The glass forming ability and thermal stability were found to increase with an increase in the concentration of modifier content. Glass density and molar volume is found to be between 2.146 to 2.314 gcm-3 and 45.794 to 48.880 m3mol-1 respectively. It is observed that the density of glass increased while the molar volume also increased with respect to increase in concentration of CaSO4 in the glass compositions. We analysed our data using different mechanisms and compared the results with previous works. Our findings show that this glass could be beneficial and considered as a good candidate for optical devices applications.


Alajerami, Y. S. M., Hashim, S., Hassan, W. M. S. W. and Ramli, A. T. 2012. The effect of titanium oxide on the optical properties of lithium potassium borate glass. Journal of Molecular Structure, 1026, 159-167.

Arunkumar, S., Marimuthu, K. 2013. Concentration effect of Sm3+ ions in B2O3–PbO–PbF2–Bi2O3–ZnO glasses–structural and luminescence investigations. Journal of Alloys and Compounds, 565, 104-114.

Daub, M., Höppe, H. A. & Hillebrecht, H. 2014. Further new borosulfates: synthesis, crystal structure, and vibrational spectra of A [B(SO4)2](A= Na, K, NH4) and the crystal structures of Li5 [B(SO4)4] and NH4 [B(S2O7)2]. Zeitschrift für Anorganische und Allgemeine Chemie, 640, 2914-2921.

Edathazhe, A. B.,Shashikala, H. 2016. Effect of BaO addition on the structural and mechanical properties of soda lime phosphate glasses. Materials Chemistry and Physics, 184, 146-154.

Ganguli, M., Rao, K. 1999. Studies on the effect of Li2SO4 on the structure of lithium borate glasses. The Journal of Physical Chemistry B, 103, 920-930.

Gilbert, J. C., Nocedal, J. 1992. Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 2, 21-42.

Hoppe, U., Brow, R. K., Tischendorf, B. C., Kriltz, A., Jóvári, P., Schöps, Hannon, A. C., 2007. Structure of titanophosphate glasses studied by X-ray and neutron diffraction. Journal of Non-Crystalline Solids, 353(18), 1802-1807.

Karabulut, M., Popa, A., Borodi, G., Stefan, R. 2015. An FTIR and ESR study of iron doped calcium borophosphate glass-ceramics. Journal of Molecular Structure, 1101, 170-175.

Kim, N.-J., Im, S.-H., Kim, D.-H., Yoon, D.-K., Ryu, B.-K. 2010. Structure and properties of borophosphate glasses. Electronic Materials Letters, 6, 103-106.

Koudelka, L., Rösslerová, I., Černošek, Z., Mošner, P., Montagne, L., Revel, B. 2014. The structural role of tellurium dioxide in lead borophosphate glasses. Journal of Non-Crystalline Solids, 401, 124-128.

Kumar, A. R., Rao, C. S., Krishna, G. M., Kumar, V. R., Veeraiah, N. 2012a. Structural features of MoO3 doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies. Journal of Molecular Structure, 1016, 39-46.

Kumar, A. R., Rao, C. S., Rao, N. N., Kumar, V. R., Kityk, I., Veeraiah, N. 2012b. Influence of valence and coordination of manganese ions on spectral and dielectric features of Na2 SO4–B2O3–P2O5 glasses. Journal of Non-Crystalline Solids, 358, 1278-1286.

Kumar, A.R., Rao, C.S., Srikumar, T., Gandhi, Y., Kumar, V.R., Veeraiah, N., 2012. Dielectric dispersion and spectroscopic investigations on Na2SO4–B2O3–P2O5 glasses mixed with low concentrations of TiO2. Journal of Alloys and Compounds, 515, pp.134-142.

Leow, T., Leong, P., Eeu, T., Ibrahim, Z., Hussin, R. 2014. Study of structural and luminescence properties of lead lithium borophosphate glass system doped with Ti ions. Sains Malaysiana, 43, 929-934.

Muñoz-Martín, D., Villegas, M. A., Gonzalo, J., Fernández-Navarro, J. M., 2009. Characterisation of glasses in the TeO 2–WO 3–PbO system. Journal of the European Ceramic Society, 29(14), 2903-2913.

Ouis, M. A., Abdelghany, A. M., Elbatal, H. A. 2012. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass. Processing and Application of Ceramics, 6, 141-149.

Pang, X. G., Eeu, T. Y., Leong, P. M., Shamsuri, W., Nurulhuda, W., Hussin, R. Structural and luminescence study of rare earth and transition metal ions doped lead zinc borophosphate glasses. Advanced Materials Research, 2014. Trans Tech Publ, 280-283.

Rada, M., Rada, S., Pascuta, P., Culea, E. 2010. Structural properties of molybdenum-lead-borate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 832-837.

Saitoh, A., Tricot, G., Rajbhandari, P., Anan, S., Takebe, H. 2015. Effect of B2O3/P2O5 substitution on the properties and structure of tin boro-phosphate glasses. Materials Chemistry and Physics, 149, 648-656.

Srinivasulu, K., Omkaram, I., Obeid, H., Kumar, A. S., Rao, J. 2013. Structural and magnetic properties of Gd3+ ions in sodium–lead borophosphate glasses. Journal of Molecular Structure, 1036, 63-70.

Stefan, R., Karabulut, M. 2014. Structural properties of iron containing calcium-magnesium borophosphate glasses. Journal of Molecular Structure, 1071, 45-51.

Suresh, S., Pavani, P. G., Mouli, V. C. 2012. Esr, optical absorption, IR and Raman studies of xTeO2+(70− x) B2O3+ 5TiO2+ 24R2O: 1CuO (x= 10, 35 and 60mol%; R= Li, Na and K) quaternary glass system. Materials Research Bulletin, 47, 724-731.

Shen, L. F., Chen, B. J., Pun, E. Y. B., Lin, H. 2015. Sm 3+-doped alkaline earth borate glasses as UV→ visible photon conversion layer for solar cells. Journal of Luminescence, 160, 138-144.

Tanko, Y., Sahar, M., Ghoshal, S. 2016. Prominent spectral features of Sm3+ ion in disordered zinc tellurite glass. Results in Physics, 6, 7-11.

Vosejpková, K., Koudelka, L., Černošek, Z., Mošner, P., Montagne, L., Revel, B. 2012. Structural studies of boron and tellurium coordination in zinc borophosphate glasses by 11 B MAS NMR and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 73, 324-329.

Vyatchina, V., Perelyaeva, L., Zuev, M., Baklanova, I. 2009. Structure and properties of glasses in the MgSO 4-Na2 B4O 7-KPO3 system. Glass Physics and Chemistry, 35, 580-585.

Wan, M. H., Wong, P. S., Hussin, R., Lintang, H. O., Endud, S. 2014. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses. Journal of Alloys and Compounds, 595, 39-45.