Natural convection of ferrofluid from a fixed vertical plate with aligned magnetic field and convective boundary condition
DOI:
https://doi.org/10.11113/mjfas.v13n3.651Keywords:
Free ConvectionMHD, Ferrofluid, Vertical Flat Plate Convective Boundary ConditionAbstract
The present study analyzed the influence of aligned and transverse magnetic field on two dimensional natural convection boundary layer flow of a ferrofluid over a semi-infinte fixed vertical plate in the presence of convective boundary condition. It is assumed that the left surface of the plate is in contact with a hot fluid while the cold fluid on the right surface. Two different base fluids (water and kerosene) containing magnetite (Fe3O4) as ferroparticle are considered. The governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations using similarity variables. The resultant system of equations is then solved numerically by using Keller-Box method. Numerical results for the skin friction coefficient and local Nusselt number were presented whilst the velocity and temperature profiles illustrated graphically and analyzed. The effect of the inclined angle, magnetic field parameter, volume fraction, Grashof number and Biot number on the flow field were discussed. It is found that the heat transfer rate at the plate surface with Fe3O4- kerosene ferrofluid is higher than Fe3O4- water.
References
S.U.S. Choi and J.A. Eastman, International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States), November 1995; Report number: ANL/MSD/CP-84938.
L.Y. Zhou, J. Tung, S. Schneider, E. Xi, Powder Technol. 196(2), 89–101(2009).
B. Jacopo, C.V. David, J. Appl. Phys. 106, 094312 (2009).
B. Lazarus Godson , D. Raja, S.L. Mohan, Renew. Sust. Energ. Rev. 14(2), 629–41 (2010)..
A. Ghadimi, R. Saidur, H.S.C Metselaar, Int. J. Heat Mass Transf. 54, 4051–4068 (2011).
H. Blasius, Z. Math. Phys. 56, 1-37 (1908).
O.D. Makinde and P.O. Olanrewaju, J. Fluid Eng. 132, 044502 (2010).
A. Aziz, 2009, Commum. Nonlinear Sci. Numer. Si-mulat. 14, 1064-1068 (2009).
C.E. Nsofor, Recent Patents Mechan. Eng. (3):190–7, 10-12 (2008).
X.Q.Wang, A.S. Mujumdar, Braz. J. Chem. Eng. 25(4), 631–648 (2008).
J. Sarkar, Renew. Sust. Energ. Rev. 15, 3271–3277 (2011).
A. Kamyar, R. Saidur, M. Hasanuzzaman, Int. J. Heat Mass
Transf. 55, 4104–4115 (2012).
O.D. Makinde, O.D., Therm. Sci. 15, S137-S143 (2011).
P.O. Olanrewaju, O.T. Arulogun and K. Adebimpe K., Am. J. Fluid Dynamics 2012 2(1), 1–4 (2012).
W.A. Khan, Z.H. Khan and R.U. Haq, The European Physical Journal Plus 130,86 (2015).
R.K. Tiwari and M.K. Das, Int. J. HeatMass Transf. 50(Nos 9-10), 2002–2018 (2007).
H. F. Oztop and E. Abu-Nada, Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008).
H. Brinkmann, J. Chem. Phys. 20, 571 (1952).
S. Mojumder, S. Saha, S. Saha and M. A. H. Mamun. Procedia Eng. 105(1), 96–104 (2014).
M. Sheikholeslami, D. D. Ganji and M. M. Rashidi. J. Taiwan Inst. Chem. Eng. 47, 6–17(2015).