Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
DOI:
https://doi.org/10.11113/mjfas.v13n2.606Keywords:
Dusty fluid, Heat and mass transfer, Exponentially stretching sheet, Chemical reaction, Fluid-particle suspensionAbstract
An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.
References
B. C. Sakiadis, AICHE J. 7 (1961) 26.
B. C. Sakiadis, AICHE J. 7 (1961) 221.
F. K. Tsou, E. M. Sparrow, R. J. Goldstein, Int. J. Heat Mass Transf. 10 (1967) 219.
L. J. Crane, Z. Angew, Math. Phys. 21 (1970) 645.
P. S. Gupta, A. S. Gupta, Can. J. Chem. Eng. 55 (1977) 744.
V. Kumaran, G. Ramanaiah, Acta Mech. 116 (1996) 229.
E. Magyari, B. Keller, J. Phys. D: Appl. Phys. 32 (1999) 577.
M. Sajid, T. Hayat, Int. Commun. Heat Mass 35 (2008) 347.
A. Ishak, Sains Malays. 40 (2011) 391.
B. Biliana, N. Roslinda, Eur. J. Sci. Res. 33 (2009) 710.
D. Pal, Appl. Math. Comput. 217 (2010) 2356.
M. Ali, F. Al-Yousef, Int. J. Heat Mass Transf. 45 (2002) 4241.
K. Sharada, B. Shankar, World J. of Mechanics 5 (2015) 165.
D. Srinivasacharya, C. RamReddy, J. Nonlinear Sci. 12 (2011) 60.
P. M. Patil, S. Roy, E. Momoniat, Int. J. Heat Mass Transf. 100 (2016) 482.
K. Bhattacharyya, J. Egyptian Math. Society 20 (2012) 223.
P. G. Saffman, J. Fluid Mech. 13 (1962) 120.
A. H. Nayfeh, AIAA J. 4 (1966) 1868.
F. E. Marble, Annu. Rev. Fluid Mech. 2 (1970) 397.
K. M. Chakrabarti, AIAA J. 12 (1974) 1136.
S. L. Soo, Phys. Fluids 18 (1975) 263.
D. A. Drew, Annu. Rev. Fluid Mech. 15 (1983) 261.
S. Siddiqa, M. A. Hossain, S. C. Saha, Int. J. Numer. Method H 25 (2015) 1542.
V. Venkataraman, K. Kannan, R. Dharmarajan, GJSFR 12 (2012).
P. M. Krishna, V. Sugunamma, N. Sandeep, Commun. Appl. Sci. 1 (2013) 161.
S. M. Isa, A. Ali, S. Shafie, AIP Conf. Proc. 1750 (2016).
B. J. Gireesha, G. M. Pavithra, C. S. Bagewadi, Br. J. Math. Stat. Psychol. 2 (2012) 187.
B. J. Gireesha, A. J. Chamkha, S. Manjunatha, C. S. Bagewadi, Int. J. Numer. Method H 23 (2013) 598.
I. Saidu, M. M. Waziri, A. Roko, M. Hamisu, J. Eng. Appl. Sci. 5 (2010) 86.
K. K. Lakshmi, B. J. Gireesha, R. S. Gorla, B. Mahanthesh, IJIM 8 (2016) 279.
S. Chaudhary, S. Singh, S. Chaudhary, Appl. Math. 6 (2015) 295.