First-principles calculations of antimony sulphide Sb2S3

Authors

  • Afiq Radzwan Universiti Teknologi Malaysia
  • Rashid Ahmed Universiti Teknologi Malaysia
  • Amiruddin Shaari Universiti Teknologi Malaysia
  • Abdullahi Lawal Universiti Teknologi Malaysia
  • Ying Xuan Ng Universiti Teknologi MalaysiaDepartment of Physics,Faculty of Science

DOI:

https://doi.org/10.11113/mjfas.v13n3.598

Keywords:

, Density Functional Theory, LAPW, Antimony Sulphide

Abstract

The structural, electronic and optical  properties of Sb2S3 have been investigated  using full-potential linearized augmented plane wave method within density functional theory (DFT) framework, treating exchange-correlation potential with Engel-Vosko generalized gradient approximation (EV-GGA). Electronic properties calculations were performed  with and without taken into account the effects of spin-orbit coupling (SOC) . From our results we found that structural properties,density of states and band structure are in good agreement with experimental results.The effects of SOC and relativistic on electronic properties were found to be negligible. However, optical properties, namely, imaginary and real parts of dielectric function, reflectivity, absorption coefficient, refractive index, extinction coefficient and energy loss function were calculated and analyized.Optical gap of 1.61 eV proves that Sb2S3 metal chalcogenides is a promising material for solar cell device.

Author Biographies

Afiq Radzwan, Universiti Teknologi Malaysia

Department of Physics,Faculty of Science

Rashid Ahmed, Universiti Teknologi Malaysia

Department of Physics,Faculty of Science

Amiruddin Shaari, Universiti Teknologi Malaysia

Department of Physics,Faculty of Science

Abdullahi Lawal, Universiti Teknologi Malaysia

Department of Physics,Faculty of Science

Ying Xuan Ng, Universiti Teknologi MalaysiaDepartment of Physics,Faculty of Science

Department of Physics,Faculty of Science

References

Candelise, C., Winskel, M. & Gross, R. (2012). Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity. Progress in Photovoltaics: Research and Applications, 20(6), 816–831.

Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S. & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), 1580–1608.

Todorov, T., Gunawan, O., Chey, S. J., De Monsabert, T. G., Prabhakar, A. & Mitzi, D. B. (2011). Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films, 519(21), 7378-7381

Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H. J., Seok, S. I., Nazeeruddin, M. K. & Gratzel, M. (2010). High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Letters, 10(7), 2609–2612.

Ali, N., Hussain, A., Ahmed, R., Shamsuri, W. N. W., Shaari, A., Ahmad, N., & Abbas, S. M. (2016). Antimony sulphide, an absorber layer for solar cell application. Applied Physics A: Materials Science and Processing, 122(1), 1–7.

García, R. A., Avendaño, C. M., Pal, M., Delgado, F. P. & Mathews, N. R. (2016). Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. Materials Science in Semiconductor Processing, 44, 91-100.

Tessler, N. (2016). The band-gap enhanced photovoltaic structure. Applied Physics Letters, 108(18), 183503.

Saito, T. (2012). Optical properties of semiconductor photodiodes/solar cells. Metrologia, 49(2), S118-S123.

Jones, R. O. (2015). Density functional theory: Its origins, rise to prominence, and future. Reviews of Modern Physics, 87(3), 897-923.

Wang, L., Kutana, A. & Yakobson, B. I. (2014). Many‐body and spin‐orbit effects on direct‐indirect band gap transition of strained monolayer MoS2 and WS2. Annalen der Physik, 526(9-10), L7-L12.

Fabian, J. (2014). Band structure and spin–orbit coupling engineering in transition‐metal dichalcogenides. Annalen der Physik, 526(9-10), A89- A91.

Zhang, Z. (2014). Spin–orbit DFT with analytic gradients and applications to heavy element compounds. Theoretical Chemistry Accounts, 133(12), 1588.

Takeda, T. & Kubler, J. (1979). Linear augmented plane wave method for self-consistent calculations. Journal of Physics F: Metal Physics, 9(4), 661-672.

Schwarz, K., Blaha, P. & Trickey, S. B. (2010). Electronic structure of solids with WIEN2k. Molecular Physics, 108(21-23), 3147-3166.

Kyono, A., & Kimata, M. (2004). Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. American Mineralogist, 89(7), 932–940.

Engel, E. & Vosko, S. H. (1993). Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Physical Review B, 47(20), 13164–13174.

de la Roza, A. O. & Luaña, V. (2009). Runwien: a text-based interface for the WIEN package. Computer Physics Communications, 180(5), 800-812.

Dufek, P., Blaha, P. & Schwarz, K. (1994). Applications of Engel and Voskos generalized gradient approximation in solids. Physical Review B, 50(11), 7279–7283.

Pourghazi, A., & Dadsetani, M. (2005). Electronic and optical properties of BaTe, BaSe and BaS from first principles. Physica B: Condensed Matter, 370(1-4), 35-45.

Carey, J. J., Allen, J. P., Scanlon, D. O. & Watson, G. W. (2014). The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications. Journal of Solid State Chemistry, 213, 116-125.

Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications, 175(1), 1-14.

Wypych, G. (2016). Handbook of fillers: Fourth edition. Elsevier.

Marton, L. (1956). Experiments on low-energy electron scattering and energy losses. Reviews of Modern Physics, 28(3), 172-183.

Downloads

Published

28-09-2017