Electronic properties of palladium diselenide by density functional theory

Authors

  • Ying Xuan Ng Universiti Teknologi Malaysia http://orcid.org/0000-0001-7879-9033
  • Rashid Ahmed Universiti Teknologi Malaysia
  • Abdullahi Lawal Universiti Teknologi Malaysia
  • Bakhtiar Ul Haq King Khalid University
  • Afiq Radzwan Universiti Teknologi Malaysia
  • Mohd Khalid Kasmin Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v13n3.589

Keywords:

DFT, Transition Metal Dichalcogenide, Structural Properties, Electronic Properties

Abstract

The knowledge of the structural and electronic properties of a material is important in various applications such as optoelectronics and thermoelectric devices. In this study, we are using full potential linearized augmented plane wave method framed within density functional theory provided by WIEN2k to optimize the structure of PdSe2 in orthorhombic (Pbca) phase and calculate its electronic properties. With the implementation of local density approximation (LDA), Perdew-Burke-Ernzerhof parameterization of generalized gradient approximation (PBE-GGA), Wu-Cohen parameterization of GGA (WC-GGA), and PBE correction for solid GGA (PBEsol-GGA), the computed results of lattice constants are found to be within 5% error with the experiment data. Also, our calculated indirect band gap energy was found to be ~0.24 eV by LDA along with modified Becke-Johnson potential functional (mBJ) with experimental lattice constants and ~0.52 eV by using PBE-GGA with optimized lattice constants. However, the effect of spin-orbit coupling is not found too much on the band gap energy. By analyzing the partial density of states, we identify that d-orbital of Pd is demonstrating a slightly more significant contribution to both the valence and conduction band near to Fermi level which is also in agreement with the previous first principles study.

References

F. A. Rasmussen, K. S. Thygesen. (2015). Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. The Journal of Physical Chemistry C, 119(23), 13169-13183.

F. Grønvold, E. Røst. (1956). On the sulfides, selenides and tellurides of palladium. Acta Chemica Scandinavica, 10, 1620-1634.

F. Grønvold, E. Røst. (1957). The crystal structure of PdSe2 and PdS2. Acta Crystallographica, 10, 329-331.

S. Bordier, A. Chocard, S. Gossé. (2014). Thermodynamic assessment of the palladium-selenium (Pd-Se) system. Journal of Nuclear Materials, 451(1-3), 120-129.

C. Soulard, X. Rocquefelte, P. E. Petit, M. Evain, S. Jobic, J. P. Itié, P. Munsch, H. J. Koo, M. H. Whangbo. (2004). Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. Inorganic Chemistry, 43(6), 1943-1949.

A. Hamidani, B. Bemmecer, K. Zanat. (2010). Structural and electronic properties of the pseudo-binary compounds (X=P, S and Se). Journal of Physics and Chemistry of Solids, 71 (1), 42-46.

J. Sun, H. Shi, T. Siegrist, D. J. Singh. (2015). Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Applied Physics Letters, 107, 153902.

J. P. Perdew, Y. Wang. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45 (23), 13244-13249.

J. P. Perdew, K. Burke, M. Ernzerhof. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77 (18), 3865-3868.

Z. Wu, R. E. Cohen. (2006). More accurate generalized gradient approximation for solids. Physical Review B, 73 (23), 235116.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100 (13), 136406.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave + local orbits program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria). Retrieved:http://susi.theochem.tuwien.ac.at/reg_user/textbooks/usersguide.pdf

S. Cottenier. (2013). Density functional theory and the family of (L)APW-methods: a step-by-step introduction, 21. Retrieved from http://susi.theochem.tuwien.ac.at/reg_user/textbooks/DFT_and_LAPW_2nd.pdf

F. Tran, P. Blaha. (2009). Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical Review Letters, 102 (22), 226401.

J. Klimeš, A. Michaelides. (2012). Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal Chemical Physics, 137, 120901.

Downloads

Published

28-09-2017