Effect of strontium concentration on thermoluminescence glow curve of copper doped lithium magnesium borate glass
DOI:
https://doi.org/10.11113/mjfas.v13n3.570Keywords:
Thermoluminescence, Borate glass, Co-60 gamma rayAbstract
This study investigates the thermoluminescence (TL) properties of copper (Cu2O) doped lithium magnesium borate (LMB) glass co-doped with strontium (SrO) subjected to Co-60 gamma irradiation. The glass samples based on (69.95-x)B2O3 – 20Li2O – 10MgO: 0.05Cu2O; xSrO, where 0.001 ≤ x ≤ 0.03 mol% were prepared by melt-quenching technique. The amorphous state of both Sr co-doped and Cu-doped LMB glass samples were confirmed by using X-Ray Diffraction (XRD). For this study, the optimum TL Response was found with 0.003 mol% of Sr concentration with TL intensity 3.6 x 105 nCg-1. The maximum peak temperature of glow curve for all glass samples was observed at 170-200 oC. The annealing procedure for the studied samples was determined at 100 oC for 20 minutes with the heating rate of 7 oC s-1.
References
Anishia, S. R., Jose, M. T., Annalakshmi, O., Ramasamy, V. 2011. Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors. Journal of Luminescence, 131(12), 2492-2498.
Alajerami, Y. S. M., Hashim, S., Ramli, A. T., Saleh, M. A., Kadni, T. 2013. Thermoluminescence characteristics of the Li2CO3-K2CO3-H3BO3 glass system co-doped with CuO and MgO. Journal of Luminescence, 143, 1-4.
Alajerami, Y. S. M., Hashim, S., Goshal, S. K., Bradley, D. A., Mhareb, M., Saleh, M. A. 2014. Copper doped borate dosimeters revisited. Journal of Luminescence, 155, 141-148.
Depci, T., Ozbayoglu, G., & Yilmaz, A 2011. Synthesis and thermoluminescence properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate. Journal of Rare Earths, 29 (6) , 618-622.
Elkholy, M. M. 2010. Thermoluminescence of B2O3-Li20 glass system doped with MgO. Journal of Luminescence, 130 (10), 1880-1892.
Evis, D., Yucel, A., Kizilkaya, N., Depci, T., Kafadar, V. E., Ozturk, E., & Yildirim, R. G. 2016. A new activator strontium for magnesium tetraborate: PL and TL studies. Journal of Applied Radiation and Isotopes, 116, 138-142.
Furetta, C. 2003. Handbook of Thermoluminescence. World Scientific.
Jiang, L. H., Zhang, Y. L., Li, C. Y., Hao, J. Q., Su, Q. 2010. Thermoluminescence studies of LiSrBO3:Re3+ (RE=Dy, Tb, Tm and Ce). Journal of Applied Radiation and Isotopes, 68(1), 196-200.
Kortov, V. S. 2010. Nanophosphors and outlooks for their use in ionizing radiation detection. Radiation Measurements, 45 (3-6), 512-515.
Lim, T. Y., Wagiran, H., Hussin, R., & Hashim, S. 2015. Thermoluminescence response of dysprosium doped strontium tetraborate glasses subjected to electron irradiations. Journal of Applied Radiation and Isotopes, 102, 10-14.
Pekpak, E., Yilmaz, A., & Ozbayoglu, G. 2010. An overview on preparation and TL characterization of lithium borates for dosimetric use. The Open Mineral Processing Journal, 3, 14-24.
Pradhan, A. S. 1981. Thermoluminescence Dosimetry and its Applications. Radiation Protection Dosimetry. 1(3), 153-167.
Santiago, M., Graseli, C., Caselli, E., Lester, M., Lavat, A. and Spano, F. 2001. Thermoluminescence of SrB4O7:Dy. Physica Status Solidi (A), 185 (2) , 285-289.
Schulman, J. H., Kirk, R. D and West, E.J. 1965. Use of lithium borate for thermoluminescence dosimetry. Proceedings of the International Conference on Luminescence Dosimetry, Conf: 650637. 25, 113-117.
Souza, L. F., Antonio, P. L., Caldas, L. V. E., & Souza, D. N. 2015. Neodymium as a magnesium tetraborate matrix dopant and its applicability in dosimetry and as a temperature sensor. Journal of Nuclear Instruments and Methods in Physics Research A. 784, 9-13.
Wu, L., Chen, X. L., Tu, Q. Y., He, M., Zhang, Y., Xu, Y. P. 2002. Phase relations in the system Li2O-MgO-B2O3. Journal of Alloys and Compounds. 333(1-2), 154-158.