Modified absorption attributes of neodymium doped magnesium-zinc-sulfophosphate glass


  • Nur Nabihah Yusof Universiti Teknologi Malaysia
  • Sib Krishna Ghoshal Universiti Teknologi Malaysia
  • Muhammad Firdaus Omar Universiti Teknologi Malaysia



Sulfophosphate glass, Absorbance, Ligand interaction, Neodymium


Rare-earth doped glass systems with improved absorption and emission features are greatly demanding for diverse applications. In this endavour, selection of right glass host, modifier, rare earth ions with optimized composition is the key issue. This communication reports the conventional melt-quench synthesis of neodymium (Nd3+) doped magnesium-zinc- sulfophosphate glass system of the form (60-x)P2O5-20MgO-20ZnSO4-xNd2O3 (x = 0, 0.5, 1, 1.5, 2.0 and 2.5 mol%). The influence of varying Nd3+ contents on the physical (density, molar volume, molar refractivity, refractive index and electronic polarizability) and absorption properties of the prepared glass system is determined. The amorphousity of the obtained samples is confirmed by XRD analysis. The glass refractive indices (ranged from 1.85 to 1.90)  and densites (between 2.63 to 2.77 are found to increase with increasing concentration of Nd3+ ion. Furthermore, the energies associated with the direct and indirect optical transitions across the forbidden gap are observed to reduce with the increase of Nd3+ ion concentration. Meanwhile, the increase of Urbach energy with increasing Nd3+doping is ascribed to the interaction of rare earth ions with the ligands of the glass network and subsequent transformation of weak bonds into defects. The room temperature UV–Vis-NIR spectra revealed eleven absorption band corresponding to the transitions from the ground state to various excited states of the Nd3+ ion. Incorporation of  Nd3+ ion is discerned to enhance the glass absorbance appreciably together with the alteration of physical properties. Present findings may be beneficial for the advancement of Nd3+ ions doped magnesium-zinc-sulfophosphate glass system based photonic devices especially for infrared solid state laser.

Author Biography

Nur Nabihah Yusof, Universiti Teknologi Malaysia

Physics department,
Ph.D candidate


Ahmadi, F., Hussin, R., and Ghoshal, S. K. 2016a. Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids, 448, 43–51.

Ahmadi, F., Hussin, R., and Ghoshal, S. K. 2016b. Optical transitions in Dy3+-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids, 452, 266–272.

Azmi, S. A. M., Sahar, M. R., Ghoshal, S. K., and Arifin, R. 2015. Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. Journal of Non-Crystalline Solids, 411, 53–58.

Bach, H. and Neuroth, N. 1998. The Properties of Optical Glass. Springer. Mainz, p. 355–357.

Binnemans, K., Van Deun, R., Gorller-Walrand, C. and Adam, J. L. 1998. Optical properties of Nd3+-doped fluorophosphate glasses. Alloys and Compounds, 275-277, 455–460.

Chimalawong, P., Kaewkhao, J., and Limsuwan, P. 2010. Effect of Nd3+ concentration on the physical and absorption properties of soda-lime-silicate glasses. Advanced Materials Research, 93-94, 455–458.

Da, N., Peng, M., Krolikowski, S., and Wondraczek, L. 2010a. Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters. Optics Express, 18, 2549–2557.

Da, N., Krolikowski, S., Nielsen, K. H., Kaschta, J., and Wondraczek, L. 2010b. Viscosity and softening behavior of alkali zinc sulfophosphate glasses. Journal of the American Ceramic Society, 93, 2171–2174.

Da, N., Grassme, O., Nielsen, K. H., Peters, G., and Wondraczek, L. 2011. Formation and structure of ionic (Na, Zn) sulfophosphate glasses. Journal of Non-Crystalline Solids, 357, 2202–2206.

Dantas, N. O., Serqueira, E. O., Silva, A. C. A., Andrade, A. A., and Lourenço, S. A. 2013. High quantum efficiency of Nd3+ ions in a phosphate glass system using the Judd-Ofelt theory. Brazilian Journal of Physics, 43, 230–238.

Diba, M., Tapia, F., Boccaccini, A.R., and Strobel, L. A. 2012. Magnesium-containing bioactive glasses for biomedical applications. International Journal of Applied Glass Science, 3, 221–253.

Dimitrov, V. and Sakka, S. 1996. Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79, 1741-1745.

Dorosz, D. 2008. Rare earth ions doped aluminosilicate and phosphate double clad optical fibres. Bulletin of the Polish Academy of Sciences Technical Sciences, 56, 103–111.

Ehrmann, P. R. and Campbell, J. H. 2002. Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses. Journal of the American Ceramic Society, 85, 1061–1069.

Elan, F., Falcao-Filho, E. L., Camilo, M. E., Garcia, J. A. M., Kassab, L. R. P., and de Araujo, C.B. 2016. Upconversion photoluminescence in GeO2-PbO glass codoped with Nd3+ and Yb3+. Optical Materials, 60, 313–317.

Elbashar, Y. H., Ali, M. I., Elshaikh, H. A., and El-Din Mostafa, A. G. 2016. Influence of CuO and Al2O3 addition on the optical properties of sodium zinc phosphate glass absorption filters. Optik, 127, 7041–7053.

Griscom, L. S., Balda, R., Mendioroz, A., Smektala, F., and Fern, J. 2001. Up-conversion processes in Nd3+-doped chloro-sulfide glasses. 284, 268–273.

Halimah, M. K., Faznny, M. F., Azlan, M. N., and Sidek, H. A. A. 2017. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 3–11.

Hu, L., Chen, S., Tang, J., Wang, B., Meng, T., Chen, W., Wen, L., Hu, J., Li, S., Xu, Y., Jiang, Y., Zhang, J., and Jiang, Z. 2014. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility. High Power Laser Science and Engineering, 2, 1–6.

Ismail, S. F., Sahar, M. R., and Ghoshal, S. K. 2016. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass. Materials Characterization, 111, 177–182.

Jlassi, I., Elhouichet, H., and Ferid, M. 2016. Influence of Mgo on structure and optical properties of alumino-lithium-phosphate glasses. Physica E: Low-Dimensional Systems and Nanostructures, 81, 219–225.

Kassab, L.R., Silva, D.M., Garcia, J.A., da Silva, D.S. and de Araújo, C.B., 2016. Silver nanoparticles enhanced photoluminescence of Nd3+ doped germanate glasses at 1064 nm. Optical Materials, 60, 25–29.

Kaur, Preet, Singh, Devinder and Singh, T. 2016. Optical, Photoluminescence and physical properties of Sm3+ doped lead alumino phosphate glasses. Journal Of Non-Crystalline Solids, 452, 87–92.

Kesavulu, C.R., Kim, H.J., Lee, S.W., Kaewkhao, J., Wantana, N., Kaewnuam, E., Kothan, S., and Kaewjaeng, S. 2016. Spectroscopic investigations of Nd3+ doped gadolinium calcium silica borate glasses for the NIR emission at 1059 nm. Journal of Alloys and Compounds.

Lakshminarayana, G., Kaky, K. M., Baki, S. O., Lira, A., Nayar, P., Kityk, I. V., and Mahdi, M. A. 2017. Physical, structural, thermal, and optical spectroscopy studies of TeO2-B2O3-MoO3-ZnO-R2O (R=Li, Na, and K)/MO (M=Mg, Ca, And Pb) glasses. Journal of Alloys and Compounds, 690, 799–816.

Liang, X., Li, H., Wang, C., Yu, H., Li, Z., and Yang, S. 2014. Physical and structural properties of calcium iron phosphate glass doped with rare earth. Journal of Non-Crystalline Solids, 402, 135–140.

Lorentz, H. A. 1880. Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte [On the relation between the propagation speed of light and density of a body], Annals of Physics, 9, 641-665. DOI: 10.1002/andp.18802450406

Lorenz, L. 1880. Über die Refractionsconstante [About the constant of refraction], Annals of Physics, 11, 70-103. DOI: 10.1002/andp.18802470905.

Matori, K. A., Sayyed, M.I., Sidek, H. A. A., Zaid, M.H.M., and Singh, V.P. 2017. Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. Journal of Non-Crystalline Solids, 457, 97–103.

Melo, G. H. A, Dias, J. D. M., Lodi, T. A., Barboza, M. J., Pedrochi, F., and Steimacher, A. 2016. Optical and spectroscopic properties of Eu2O3 doped CaBaAl glasses. Optical Materials, 54, 98–103.

Miguel, A., Azkargorta, J., Morea, R., Iparraguirre, I., Gonzalo, J., Fernandez, J., and Balda, R. 2013. Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass. Opt

Express, 21, 9298–9307.

Novais, A. L. F., Dantas, N. O., Guedes, I., and Vermelho, M. V. D. 2015. Spectroscopic properties of highly Nd-doped lead phosphate glass. Journal of Alloys and Compounds, 648, 338–345. Elsevier B.V.

Nurhafizah, H., Rohani, M. S., and Ghoshal, S. K. 2016. Er3 +:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media. Journal of Non-Crystalline Solids, 443, 23–32.

Othman, Arzumanian, and Möncke, D. 2016. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses.Optical Materials. 1-8.

Pawar, P. P., Munishwar, S. R., and Gedam, R. S. 2016. Intense white light luminescent Dy3+ doped lithium borate glasses for w-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sciences, 64, 41–50.

Ratnakaram, Y. C., Babu, S., Bharat, L. K., and Nayak, C. 2016. Fluorescence characteristics of Nd3+ doped multicomponent fluoro-phosphate glasses for potential solid-state laser applications. Journal of Luminescence, 175, 57–66.

Reddy Prasad, V., Seshadri, M., Babu, S., and Ratnakaram, Y. C.

Concentration-dependent studies of Nd3+-doped zinc phosphate glasses for nir photoluminescence at 1.05 μm. Journal of Biological and Chemical Luminescence.1-9.

Saddeek, Y. B., El-Maaref, A. A., Aly, K. A., ElOkr, M. M., and Showahy, A. A. 2017. Investigations on spectroscopic and elasticity studies of Nd2O3 doped CANP phosphate glasses. Journal of Alloys and Compounds, 694, 325–332.

Samdani, Ramadevudu, G., Chary, M. N., and Shareefuddin, M. 2017. Physical and spectroscopic studies of Cr3+ doped mixed alkaline earth oxide borate glasses. Materials Chemistry and Physics, 186, 382–389.

Selvi, S., Marimuthu, K., and Muralidharan, G. 2015. Structural and luminescence behavior of Sm3+ ions doped lead boro-telluro-phosphate glasses. Journal of Luminescence, 159, 207–218.

Shan, X., Tang, G., Chen, X., Peng, S., Liu, W., Qian, Q., Chen, D., and Yang, Z. 2016. Silver nanoparticles enhanced near-infrared luminescence of Er3+/Yb3+ Co-doped multicomponent phosphate glasses. Journal of Rare Earths, 34, 868–875.

Shannon, R. D. 1976. Revised effective ionic radii and systematic

studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751–767.

Shannon, R. D. and Prewitt, C. T. 1969. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25, 925–946.

Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Gelloz, B., and Férid, M. 2016. Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: Heat treatment effect. Journal of Alloys and Compounds, 686, 556–563.

Stiefel, E. I. 1996. Transition metal sulfur chemistry: biological and industrial significance and key trends. American Chemical Society, 1–37.

Striepe, S., Da, N., Deubener, J., and Wondraczek, L. 2012. Micromechanical properties of (Na,Zn)-sulfophosphate glasses. Journal of Non-Crystalline Solids, 358, 1032–1037.

Surana, S. S. L., Sharma, Y. K., and Tandon, S. P. 2001. Laser action in neodymium-doped zinc chloride borophosphate glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 83, 204–209.

Thieme, A., Möncke, D., Limbach, R., Fuhrmann, S., Kamitsos, E. I., and Wondraczek, L. 2015. Structure and properties of alkali and silver sulfophosphate glasses. Journal of Non-Crystalline Solids, 410, 142–150.

Träger, F. 2012. Handbook of Lasers and Optics. Springer. Kassel, p. 1332.

Wu, F., Li, S., Chang, Z., Liu, H., Huang, S., and Yue, Y. 2016. Local structure characterization and thermal properties of P2O5-MgO-Na2O-Li2O glasses doped with SiO2. Journal of Molecular Structure, 1118, 42–47.

Zamratul, M. I. M., Zaidan, A. W., Khamirul, A. M., Nurzilla, M., and Halim, S. A. 2016. Formation, structural and optical characterization of neodymium doped-zinc soda lime silica based glass. Results in Physics, 6, 295–298.