Improved absorbance of holmium activated magnesium-zinc-sulfophosphate glass


  • Siti Aishah Jupri Universiti Teknologi Malaysia
  • Sib Krishna Ghoshal Universiti Teknologi Malaysia
  • Muhammad Firdaus Omar Universiti Teknologi Malaysia
  • Sunita Sharma ITM University



Holmium, Absorption, Band gap, Urbach energy


Constant efforts are dedicated to overcome the limitations of phosphate based glass system, where sulfophosphate glasses (SPGs) played a key role. Rare earth ions (REIs) doped magnesium zinc SPG (MZSPG) systems are technologically prospective due to their several unique attributes. Construction of integrated light amplifier and solid state laser needs the maximum gain within small component dimensions. Thus, Ho3+ ions doped SPGs are believed to meet this demand. Ho3+ ions having sharp optical absorption peaks in the spectral range of 200–900 nm is useful for diversified applications. Conversely, SPGs comprising of oxides of sulphur, phosphorous and at least one other component with SO42- ions contents lower than PO43- with low melting temperature makes them a distinctive class of technologically potential disordered system. In this view, modification of Ho3+ ions absorbance inside SPGs network is challenging. To achieve this goal, following melt-quenching route we prepared a series of Ho3+-doped MZSPG system of composition (60-x)P2O5-(20)ZnSO4-(20)MgO–(x)Ho2O3, where x = 0.0, 0.5, 1.0, 1.5 2.0, and 2.5 mol%. The influence of Ho2O3 concentration on the density, refractive index, and optical absorption properties of the synthesized glass system is examined. The density and refractive index is found to increase with increasing Ho2O3 concentration. The absorption spectra revealed nine prominent peaks centered at 387, 418, 450, 484, 538, 642, 1148 and 1945 nm. The glass absorbance is enhanced with increasing Ho3+ contents. Optical band gap energy is found to range from 3.847 to 3.901 eV. The reduction of Urbach energy from 0.257 to 0.191 eV with increasing Ho3+ contents verified the shrinkage of glass network structure and lowering of defect mediated disorder. In-depth investigations on the structural and optical properties of MZSPG system are underway to achieve the milestones set for photonic devices.


Ahmadi, F., R. Hussin, and S. K. Ghoshal. 2016. “Optical transitions in Dy3+-doped magnesium zinc sulfophosphate glass.” Journal of Non-Crystalline Solids 452:266–72.

Alivisatos, A. P., A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus. 1988. “Electronic states of semiconductor clusters: Homogeneous and Inhomogeneous Broadening of the Optical Spectrum.” The Journal of Chemical Physics 89(7):4001.

Azmi, S. A. M., M. R. Sahar, S. K. Ghoshal, and R. Arifin. 2015. “Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles.” Journal of Non-Crystalline Solids 411:53–58.

Babu, S., M. Seshadri, A. Balakrishna, V. R. Prasad, and Y. C. Ratnakaram. 2015. “Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center.” Physica B: Condensed Matter 479:26–34.

Carnall, W. T., P. R. Fields, and K. Rajnak. 1968. “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+.” The Journal of Chemical Physics 49(10):1785–3797.

Davis, E. A. and N. F. Mott. 1970. “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors.” Philosophical Magazine 22(179):0903–22.

Dousti, M.R., S. K. Ghoshal, R. J. Amjad, M. R. Sahar, F. Nawaz, and R. Arifin. 2013. “Structural and optical study of samarium doped lead zinc phosphate glasses.” Optics Communications 300:204–9.

El-Mallawany, R., M. D. Abdalla, and I. A. Ahmed. 2008. “New tellurite glass: optical properties.” Materials Chemistry and Physics 109(2–3):291–96.

Ganguli, M., M. H. Bhat, and K. J. Rao. 1999. “Lithium ion transport in Li2SO4–Li2O–P2O5 glasses.” Solid State Ionics 122(February):23–33.

Honma, T., R. Sato, Y. Benino, T. Komatsu, and V. Dimitrov. 2000. “Electronic polarizability, optical basicity and XPS spectra of Sb2O3-B2O3 glasses.” Journal of Non-Crystalline Solids 272:1–13.

Hussain, N. S., N. Ali, A. G. Dias, M. A. Lopes, J. D. Santos, and S. Buddhudu. 2006. “Absorption and emission properties of Ho3+ doped lead-zinc-borate glasses.” Thin Solid Films 515(1):318–25.

Jlassi, I., H. Elhouichet, and M. Ferid. 2016. “Influence of MgO on structure and optical properties of alumino-lithium-phosphate glasses.” Physica E: Low-dimensional Systems and Nanostructures 81:219–25.

Khor, S. F., Z. A. Talib, F. Malek, and E. M. Cheng. 2013. “Optical properties of ultraphosphate glasses containing mixed divalent zinc and magnesium ions.” Optical Materials 35(3):629–33.

Khor, S. F., Z. A. Talib, and W. M. Mat Yunus. 2012. “Optical properties of ternary zinc magnesium phosphate glasses.” Ceramics International 38(2):935–40.

Lee, T. H., Y. K. Kwon, and J. Heo. 2008. “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses.” Journal of Non-Crystalline Solids 354(27):3107–12.

Mahamuda, Sk., K. Swapna, P. Packiyaraj, A. Srinivasa Rao, and G. Vijaya Prakash. 2013. “Visible red, NIR and mid-IR emission studies of Ho3+ doped zinc alumino bismuth borate glasses.” Optical Materials 36(2):362–71.

Mahraz, Z. A. S., M. R. Sahar, and S. K. Ghoshal. 2014. “Band gap and polarizability of boro-tellurite glass: influence of erbium ions.” Journal of Molecular Structure 1072(1):238–41.

Malinowski, M., M. Kaczkan, A. Wnuk, and M. Szufliñska. 2004. “Emission from the high lying excited states of Ho3+ ions in YAP and YAG crystals.” Journal of Luminescence 106(3–4):269–79.

Mhareb, M. H. A., S. Hashim, S. K. Ghoshal, Y. S. M. Alajerami, M. J. Bqoor, A. I. Hamdan, M. A. Saleh, and M. K. B. Abdul Karim. 2016. “Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass.” Journal of Luminescence 177:366–72.

Nurhafizah, H., M. S. Rohani, and S. K. Ghoshal. 2016. “Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media.” Journal of Non-Crystalline Solids 443:23–32.

Omrani, R. O., A. Kaoutar, A. El Jazouli, S. Krimi, I. Khattech, M. Jemal, J.-J. Videau, and M. Couzi. 2015. “Structural and thermochemical properties of sodium magnesium phosphate glasses.” Journal of Alloys and Compounds 632:766–71.

Prasad, N. V. V, K. Annapurna, N. S. Hussain, and S. Buddhudu. 2003. “Spectral analysis of Ho3+: TeO2-B2O3-Li2O glass.” Materials Letters 57(13–14):2071–80.

Rai, S. and A. L. Fanai. 2016. “Optical properties of Ho3+ in sol-gel silica glass Co-doped with aluminium.” Journal of Non-Crystalline Solids 449:113–18.

Satyanarayana, T., T. Kalpana, V. R. Kumar, and N. Veeraiah. 2010. “Role of Al coordination in barium phosphate glasses on the emission features of Ho3+ ion in the visible and IR spectral ranges.” Journal of Luminescence 130(3):498–506.

Seshadri, M., L. C. Barbosa, and M. Radha. 2014. “Study on structural, optical and gain properties of 1.2 and 2.0 um emission transitions in Ho3+ Doped tellurite glasses.” Journal of Non-Crystalline Solids 406:62–72.

Seshadri, M., Y. C. Ratnakaram, D. T. Naidu, and K. V. Rao. 2010. “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses.” Optical Materials 32(4):535–42.

Shannon, R. D. 1976. “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides.” Acta Crystallographica A32(32):751–67.

Singh, S. and K. Singh. 2014. “Effect of in-situ reduction of Fe3+ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics.” Journal of Non-Crystalline Solids 386:100–104.

Urbach, F. 1953. “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids ” Physical Review 92(5):1324.

Venkateswarlu, M. Sk. Mahamuda, K. Swapna, M. V.V. K. S. Prasad, A. S. Rao, S. Shakya, A. M. Babu, and G. V. Prakash. 2015. “Holmium doped lead tungsten tellurite glasses for green luminescent applications.” Journal of Luminescence 163:64–71.

Vijayakumar, R., G. Venkataiah, and K. Marimuthu. 2015. “Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED’s and laser applications.” Journal of Alloys and Compounds 652:234–43.

Wu, F., S. Li, Z. Chang, H. Liu, S. Huang, and Y. Yue. 2016. “Local structure characterization and thermal properties of P2O5-MgO-Na2O-Li2O glasses doped with SiO2.” Journal of Molecular Structure 1118:42–47.

Yusoff, N. M. and M. R. Sahar. 2015. “Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses.” Physica B: Physics of Condensed Matter 456:191–96.

Yusoff, N. M., M. R. Sahar, and S. K. Ghoshal. 2015. “Sm3+:Ag NPs assisted modification in absorption features of magnesium tellurite glass.” Journal of Molecular Structure 1079:167–72.

Zhao, X., X. Wang, H. Lin, and Z. Wang. 2007. “Correlation among Electronic polarizability, optical basicity and interaction parameter of Bi2O3-B2O3 glasses.” Physica B: Condensed Matter 390(1–2):293–300.