Optimization of reflector antennas in radio telescopes
DOI:
https://doi.org/10.11113/mjfas.v13n3.552Keywords:
Cassegrain antenna, edge taper, spillover efficiency, taper efficiency, aperture efficiency, radiation characteristicsAbstract
We present an analysis on the performance of Cassegrain reflector antennas. In our study, we have adopted the design parameters for the Cassegrain configuration used in the Atacama Large Millimeter Array (ALMA) project. We have adjusted the focal-length-to-diameter ratio f/D of the primary reflector to investigate the optimum performance of the antenna. In our study, signal frequency at the high edge of ALMA band 1, i.e. 45 GHz has been selected. The results obtained from the physical optics simulation show that the aperture efficiency of the antenna is at its optimum (i.e. 80.36%) when f/D ranges from 0.5 to 0.6. The radiation characteristics at this range of ratio are found to be similar. The radius of the secondary reflector and edge taper Te which correspond to the optimum aperture efficiencies ranges from 371 mm to 372 mm and 10.64 dB to 10.75 dB, respectively.References
Candotti, M., Baryshev, A. M., Trappe, N. 2009. Quasi-optical assessment of the ALMA band 9 front-end, Infrared Physics and Technology, 52, 174 – 179.
Chen, D., Wang, H., Qian, H., Zhang, G., Shen, S. 2016. Solar cooker effect test and temperature field simulation of radio telescope subreflector, Applied Thermal Engineering, 109, 147 – 154.
Mather, J. C., Cheng, E. S., Cottingham, D. A., Eplee, R. E. Jr., Fixsen, D. J., Hewagama, T., Isaacman, R. B., Jensen, K. A., Meyer, S. S., Noerdlinger, P. D., Read, S. M., Rosen, L. P., Shafer, R. A., Wright, E. L., Bennett, C. L., Boggess, N. W., Hauser, M. G., Kelsall, T., Moseley, S. H. Jr., Silverberg, R. F., Smoot, G. F., Weiss, R., Wilkinson, D. T. 1994. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, The Astrophysical J, 420, 439 – 444.
Courtney-Pratt, J. S., Hett, J. H., McLaughlin, J. W. 1963. Optical measurements on Telstar to determine the orientation of the spin axis, and the spin rate, J. Society of Motion Picture and Television Engineers, 72, 462 – 484.
Goldsmith, P. F. 1998. Quasioptical Systems: Gaussian Beam, Quasioptical Propagation and Applications, New York: IEEE Press.
Gonzalez, A., Uzawa, Y., Fujii, Y., Kaneko, K. 2011. ALMA band 10 tertiary optics, Infrared Physics and Technology, 54, 488 – 496.
Phllips, T. G., Keene, J. 1992. Submillimeter astronomy (heterodyne spectroscopy), Proceedings of the IEEE, 80, 1662 – 1678.
Milligan, T. A. 2005. Modern Antenna Design. (2nd ed.). US: Wiley Interscience.
Rusch, W. 1992. The current state of the reflector antenna are – entering the 1990s, Proceedings of the IEEE, 80, 113 – 126.
Tham, C. Y., Yassin, G., Carter, M. 2007. Analysis techniques for the optics in millimeter/submillimeter wave radio telescope receivers, Jurnal Fizik Malaysia, 28, 49 – 53.
Wotten, A. 2008. ALMA capabilities for observations of spectral line emission, Astrophysics and Space Science, 313, 9 – 12.
Yeap, K. H., Loh, M. C., Tham, C. Y., Yiam, C. Y., Yeong, K. C., Lai,
K. C. 2016. Analysis of reflector antennas in radio telescopes, Advanced Electromagnetics, 5, 3, 32 – 38.
Yeap, K. H., Law, Y. H., Rizman, Z. I., Cheong, Y. K., Ong, C. E., Chong, K. H. 2013. Performance analysis of paraboloidal reflector antennas in radio telescopes, International Journal of Electronics, Computer, and Communication Technologies, 4, 21 – 25.
Yeap, K. H., Tham, C. Y., Yeong, K. C., Chong, K. H., Rizman, Z. I., Yang, C. C. 2011. Analysis of normal and superconducting coplanar waveguides in radio astronomy, International Journal of Electronics, Computer, and Communication Technologies, 2, 9 – 12.