Alternative pathway to brominate 2,13-benzothiadiazole: Preparation of 4,7-dibromobenzo[c]-1,2,5-thiadiazole via N-bromosuccinimide

Shu Er Tan, Mohd. Sani Sarjadi

Abstract


This present work reports an alternative pathway to brominate the 2,1,3-benzothiadiazole (BT). The conventional method to brominate a phenyl/benzene ring is to use the bromine solution (Br2) together with hydrobromic acid (HBr). This is because the phenyl/benzene rings exhibit high stability due to the delocalized -conjugation, which the substitution of bromines into the rings can only be done through a strong bromination source, e.g. the Br2/HBr. Besides that, there is another bromine source, known as N-bromosuccinimide (NBS), which is normally used for bromination of thiophene rings but not the phenyl/benzene ring. The bromination ability of NBS is relatively mild than the Br2/HBr. Herein, this research shows that bromination of benzene/phenyl ring through NBS is possible under a drastic condition that involved the usage of 96% concentrated sulphuric acid and chloroform at room temperature. This alternative pathway can be used when there is limit access to the Br2 and bromination through NBS is relatively less dangerous than the Br2/HBr.


Keywords


Bromination; 2,1,3-Benzothiadiazole; N-bromosuccinimide; HBr/Br2

Full Text:

PDF

References


Andrievsky, A. M., Lomzakova, V. I., Grachev, M. K., & Gorelik, M. V. (2014). Aromatic bromination in concentrated nitric acid. Open Journal of Synthesis Theory and Applications, 3, 15–20.

Beaupré, S., & Leclerc, M. (2013). PCDTBT: en route for low cost plastic solar cells. Journal of Materials Chemistry A, 1(37), 11097-11105. https://doi.org/ 10.1039/c3ta12420g

Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletête, M., Durocher, G., Tao, Y., Leclerc, M. (2008). Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 130(2), 732–742. https://doi.org/10.1021/ ja0771989

Bose, A., & Mal, P. (2014). Electrophilic aryl-halogenation using N-halosuccinimides under. Tetrahedron Letters, 55(13), 2154–2156. https:// doi.org/10.1016/j.tetlet.2014.02.064

Brown, W. D., & Gouliaev, A. H. (2005). Synthesis of 5-bromoisoquinoline and 5-bromo-8-nitroisoquinoline. Organic Syntheses, 81, 98–104. https://doi.org/10.15227/orgsyn.081.0098

Bundgaard, E., & Krebs, F. C. (2007). Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 91 (11) 954-985. https://doi.org/ 10.1016/j.solmat.2007.01.013

Chaudhuri, M. K., Khan, A. T., Patel, B. K., Dey, D., Kharmawophlang, W., Lakshmiprabha, T. R., & Mandal, G. C. (1998). An environmentally benign synthesis of organic ammonium tribromides (OATB) and bromination of selected organic substrates by tetrabutylammonium tribromide (TBATB).

Tetrahedron Letters, 39(44), 8163–8166. https://doi.org/10.1016/S0040-4039(98)01818-8

Choi, M.-H., Song, K. W., & Moon, D. K. (2015). Alkylidenefluorene–isoindigo copolymers with an optimized molecular conformation for spacer manipulation, π–π stacking and their application in efficient photovoltaic devices. Polymer Chemistry, 6(14), 2636–2646. https://doi.org/ 10.1039/C5PY00003C

Duan, J., Zhang, L. H., & Dolbier, W. R. (1999). A Convenient New Method for the Bromination of Deactivated Aromatic Compounds. Synlett, (8), 1245–1246.

Eguchi, H., Kawaguchi, H., Yoshinaga, S., Nishida, A., Nishiguchi, T., & Fujisaki, S. (1994). Halogenation using n-halogenocompounds. II. Acid catalyzed bromination of aromatic compounds with 1,3-dibromo-5,5-dimethylhydantoin. Bulletin of the Chemical Society of Japan, 67(7), 1918–1921.

France, S., Weatherwax, A., & Lectka, T. (2005). Recent developments in catalytic, asymmetric α-halogenation: A new frontier in asymmetric catalysis. European Journal of Organic Chemistry, (3), 475–479. https://doi.org/ 10.1002/ejoc.200400517

Hao, W., & Liu, Y. (2015). C-H bond halogenation catalyzed or mediated by copper: An overview. Beilstein Journal of Organic Chemistry, 11, 2132–2144. https://doi.org/10.3762/bjoc.11.230

Helgesen, M., Gevorgyan, S. A., Krebs, F. C., & Janssen, R. A. J. (2009). Substituted 2,1,3-benzothiadiazole- and thiophene-based polymers for solar cells − Introducing a new thermocleavable precursor. Chemistry of Materials, 21(19), 4669–4675. https://doi.org/10.1021/cm901937d

Kutkan, S., Goker, S., Hacioglu, S. O., & Toppare, L. (2016). Syntheses, electrochemical and spectroelectrochemical characterization of benzothiadiazole and benzoselenadiazole based random copolymers. Journal of Macromolecular Science, Part A, 53(8), 475–483. https://doi.org/ 10.1080/10601325.2016.1189280

Lambert, F. L., Ellis, W. D., & Parry, R. J. (1965). Halogenation of aromatic compounds by N-bromo-and N-chlorosuccinimide under ionic conditions. The Journal of Organic Chemistry, 30(1), 304–306. https://doi.org/ 10.1021/jo01012a512

Li, R., Wang, Z. J., Wang, L., Ma, B. C., Ghasimi, S., Lu, H., Landfester, K., & Zhang, K. A. I. (2016). Photocatalytic selective bromination of electron-rich aromatic compounds using microporous organic polymers with visible light. ACS Catalysis, 6(2), 1113–1121. https://doi.org/10.1021/acscatal.5b02490

Mendoza, F., Ruíz-Guerrero, R., Hernández-Fuentes, C., Molina, P., Norzagaray-Campos, M., & Reguera, E. (2016). On the bromination of aromatics, alkenes and alkynes using alkylammonium bromide: Towards the mimic of bromoperoxidases reactivity. Tetrahedron Letters, 57(50), 5644–5648. https://doi.org/10.1016/j.tetlet.2016.11.011

Mo, F., Yan, J. M., Qiu, D., Li, F., Zhang, Y., & Wang, J. (2010). Gold-catalyzed halogenation of aromatics by n-halosuccinimides. Angewandte Chemie International Edition, 49(11), 2028–2032. https://doi.org/10.1002/ anie.200906699

Moriya, T., Yoneda, S., Kawana, K., Ikeda, R., Konakahara, T., & Sakai, N. (2012). Indium-catalyzed reductive bromination of carboxylic acids leading to alkyl bromides. Organic Letters, 14(18), 4842–4845. https://doi.org/ 10.1021/ol302168q

Pilgram, K., Zupan, M., & Skiles, R. (1970). Bromination of 2,1,3-benzothiadiazoles, 7(3), 629–633.

Podgoršek, A., Zupan, M., & Iskra, J. (2009). Oxidative halogenation with “green” oxidants: Oxygen and hydrogen peroxide. Angewandte Chemie - International Edition, 48(45), 8424–8450. https://doi.org/10.1002/ anie.200901223

Sonar, P., Singh, S. P., Leclère, P., Surin, M., Lazzaroni, R., Lin, T. T., Dodabalapur, A., & Sellinger, A. (2009). Synthesis, characterization and comparative study of thiophene–benzothiadiazole based donor–acceptor–donor (D–A–D) materials. Journal of Materials Chemistry, 19(20), 3228. https://doi.org/10.1039/b820528k

Wang, K., Hu, Y., Yang, W., Shi, Y., & Li, Y. (2012). Solubilities of succinimide in different pure solvents and binary methanol + ethyl acetate solvent mixtures. Thermochimica Acta, 538, 79–85. https://doi.org/ 10.1016/j.tca.2012.03.007

Wang, Y., Li, L., Ji, H., Ma, W., Chen, C., & Zhao, J. (2014). Iron(III)-mediated photocatalytic selective substitution of aryl bromine by chlorine with high chloride utilization efficiency. Chemical Communications (Cambridge, England), 50(18), 2344–6. https://doi.org/10.1039/c3cc48246d

Westrup, J. L., Oenning, L. W., Da Silva Paula, M. M., Da Costa Duarte, R., Rodembusch, F. S., Frizon, T. E. A., Silva, L., & Dal-Bó, A. G. (2016). New photoactive D-π-A-π-D benzothiadiazole derivative: Synthesis, thermal and photophysical properties. Dyes and Pigments, 126, 209–217. https://doi.org/10.1016/j.dyepig.2015.12.003

Xu, D., Geng, J., Dai, Y., Peng, Y.-X., Qian, H.-F., & Huang, W. (2017). pH-controlled synthesis of an aromatic triazene and its copper(II) complexation accompanied by an unexpected aromatic ring halogenation. Dyes and Pigments, 136, 398–403. https://doi.org/10.1016/j.dyepig.2016.08.062

Yadav, J. S., Reddy, B. V. S., Reddy, P. S. R., Basak, A. K., & Narsaiah, A. V. (2004). Efficient halogenation of aromatic systems using n-halosuccinimides in ionic liquids. Advanced Synthesis & Catalysis, 346(1), 77–82. https://doi.org/10.1002/adsc.200303229

Yang, L., Lu, Z., & Stahl, S. S. (2009). Regioselective copper-catalyzed chlorination and bromination of arenes with O2 as the oxidant. Chemical Communications, (42), 6460–2. https://doi.org/10.1039/b915487f

Yonehara, K., Kamata, K., Yamaguchi, K., & Mizuno, N. (2011). An efficient H2O2-based oxidative bromination of alkenes, alkynes, and aromatics by a divanadium-substituted phosphotungstate. Chemical Communications (Cambridge, England), 47(6), 1692–1694. https://doi.org/10.1039/ c0cc04889e

Zhang, C. M. (2004). Process for preparing a 4,7-bis(5-halothien-2-yl)-2,1,3-benzothiadiazole and a precursor therefor. USA. Retrieved from http://www.freepatentsonline.com/20040229925.pdf

Zhou, M., Wang, M., Zhu, L., Yang, Z., Jiang, C., Cao, D., & Li, Q. (2015). D-π-A-π-A strategy to design benzothiadiazole-carbazole-based conjugated polymer with high solar cell voltage and enhanced photocurrent. Macromolecular Rapid Communications, 36(24), 2156–2161. https://doi.org/ 10.1002/marc.201500466




DOI: https://doi.org/10.11113/mjfas.v0n0.549

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Shu Er Tan, Mohd. Sani Sarjadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright © 2005-2019 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website.