Morphology and luminescence of photo-electrochemically synthesized porous silicon: Influence of varying current density


  • Asad Thahe Universiti Technologi Malaysia(UTM)
  • Hazri Bakhtiar Universiti Technologi Malaysia(UTM)
  • Noriah Bidin Laser Center, Institute Ibnu Sina, Universiti Teknologi Malaysia, Skudai 81310 Johor, Malaysia
  • Zainuriah Hassan Universiti Sains Malaysia
  • Zainal Abidin Talib Universiti Putra Malaysia
  • Uday Basheer Universiti Teknologi Malaysia
  • Dauda Abubakar Universiti Sains Malaysia
  • Muhammad Aizi Mat Salim Universiti Teknologi Malaysia
  • Motahher Abdallah Qaeed Hodeidah University
  • Hasan Alqaraghuli Universiti Teknologi Malaysia



Porous Si, Morphology, Photo-electro-chemical etching, Photoluminescence, Band gap.


Achieving high quality porous silicon (PSi) materials with desired porosity remains challenging. Three good qualities of PSi samples are prepared by Photo electro-chemically etching a piece of n-type Si inside the solution of 20 M HF, 10 M C2H5OH and 10 M H2O2 at fixed etching time duration (30 min) and varying current density (15 mA/cm2, 30 mA/cm2 and 45 mA/cm2). As-prepared sample morphologies are characterized via scanning electron microscopy (SEM) and atomic force microscopy (AFM). The gravimetric method is used to estimate the thickness and porosity of the prepared samples. Current density (etching time) dependent morphologies, electronic bandgap and room temperature photoluminescence (PL) properties of such PSi nanostructures are evaluated. These PSi structures revealed enhanced rectifying characteristics with increasing current density. 

Author Biographies

Asad Thahe, Universiti Technologi Malaysia(UTM)

Physic Department

Hasan Alqaraghuli, Universiti Teknologi Malaysia

Mechatronics and Automatic Control Department


Abd, H. R. Al-Douri, Y. Ahmed, N. M. and Hashim, U. (2013). Alternative-current electrochemical etching of uniformporous silicon for photodetector applications. International Journal of Electrochemical Science, 8(9), pp. 11461–11473.

Abd Rahim, A. F. Hashim, M. R. Rusop, M. Ali, N. K. and Yusuf, R. (2012). Room temperature Ge and ZnO embedded inside porous silicon using conventional methods for photonic application. Superlattices and Microstructures, 52(5), pp. 941–948.

Abud, S. H. Hassan, Z. and Yam, F. K. (2014). Fabrication and characterization of metal-semiconductor-metal photodetector based on porous InGaN. Materials Chemistry and Physics, 144(1-2), pp. 86–91.

Batool E. B. Al-Jumaili , Zainal A. Talib, Josephine L. Y., Suriati B. Paiman, Naser M. Ahmed, Abdulmajeed H. J. Al-Jumaily (2016). The correlation of blue shift of photoluminescence and morphology of silicon nanoporous. AIP Conference Proceedings, 1733(1), Article ID 020019.

Behzad, K. Yunus, W. M. M. Talib, Z. A. Zakaria, A. and Bahrami, A. (2012). Effect of preparation parameters on physical, thermal and optical properties of n-type porous silicon. International Journal of Electrochemical

Science, 7(9), pp. 8266–8275.

Bisi, O., Ossicini, S., Pavesi, L. (2000). Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surfeace. Science. Reports, 38(1-3), pp. 1–126.

Canham, L. T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57(10), pp. 1046-1048.

Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P., Fauchet, P. (1996). Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature, 384(6607), pp. 338–341.

Hussein, M. J, Mat Yunus. W. M, Kamari, H, M, Zakaria, A, Oleiw, H. F. (2016). Effect of current density and etching time on photoluminescence and energy band gap of p-type porous Si. Optical and Quantim Electronics, 48, pp. 194.

Lazarouk, S., Jaguiro, P., Katsouba, S., Masini, G., La Monica, S., Maiello, G. and Ferrari, A. (1996) Stable electroluminescence from reverse biased n‐type porous silicon–aluminum Schottky junction device. Applied Physics Letters, 68(2), pp. 2108-2110.

Lee, M. K., Tseng, Y. C. and Chu, C. H. (1998). A high-gain porous silicon metal-semiconductor-metal photodetector through rapid thermal oxidation and rapid thermal annealing,” Applied Physics A: Materials Science and Processing, 67(5), pp. 541–543.

Nahor, A., Berger, O., Bardavid, Y., Toker, G., Tamar, Y., Reiss, L., Sa’ar, A. (2011). Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Physica Status Solidi (c), 8(6), pp. 1908–1912.

Nur, H., Hayati, F., Hamdan, H. (2007). On the location of different titanium sites in Ti-OMS-2 and their catalytic role in oxidation of styrene. Catalysis Communications, 8, pp. 2007-2011.

Nur, H., Guan, L. C., Endud, S., Hamdan, H. (2004). Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Materials Letters, 58(12-13), pp. 1971-1974.

Pap, A. E. Kordás, K. Vähäkangas, J. Uusimäki, A. Leppävuori, S. Pilon, L. and Szatmári, S. (2006). Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results. Optical Materials, 28(5), pp. 506–513.

Ramizy, A. Hassan, Z, and Omar. K, (2011). Porous silicon nanowires fabricated by electrochemical and laser-induced etching. Journal of Materials Science: Materials in Electronics, 22(7), pp. 717–723

Steiner, P. and Lang, W. (1995). Micromachining applications of porous silicon. Thin Solid Films, 255, pp. 52–58.

Young, S. J. Ji, L. W. Chuang, R. W. Chang, S. J. and Du, X. L. (2006). Characterization of ZnO metal-semiconductor-metal ultraviolet photodiodes with palladium contact electrodes. Semiconductor Science and Technology, 21(10), pp. 1507– 1511.