Multiplication gain and excess noise factor in thin SiC avalanche photodiodes
DOI:
https://doi.org/10.11113/mjfas.v12n4.477Keywords:
silicon carbide (SiC), avalanche photodiode, impact ionization, dead space, multiplication gain, excess noise factorAbstract
This work simulated the avalanche characteristics of 4H- and 6H-SiC avalanche photodiodes (APDs) at 0.1 µm, 0.2 µm and 0.3 µm avalanche widths. A Monte Carlo model with random ionization path length techniques is developed to simulate mean multiplication gain and excess noise factor in thin SiC APDs. Mean multiplication gain, breakdown voltage and excess noise factor are simulated based on the electric field dependent impact ionization coefficients with the inclusion of dead space effect. Our results show that hole-initiated impact ionization gives high multiplication gain with low excess noise factor in both devices. We observed that dead space effect is more pronounce in thin structure since it covers a significant portion of the avalanche region. In thick device structure, a high breakdown voltage is observed. A comparison between these two polytypes shows that 4H-SiC provides high multiplication gain with low excess noise factor than 6H-SiC.References
F. Bertazzi, M. Moresco, E. Bellotti, J. Appl. Phys. 106 (2009) 063718.
R. McClintock, J.L. Pau, C. Bayram, B. Fain, P. Giedraitis, M. Razeghi, M.P. Ulmer, in: Proc. SPIE 7222, 2009, p. 72220U1.
M. Moresco, F. Bertazzi, E. Bellotti, IEEE J. Quantum Electron. 47 (2011) 447.
J.C. Carrano, D.J.H. Lambert, C.J. Eiting, C.J. Collins, T. Li, S. Wang, B. Yang, A.L. Beck, J.C. Campbell, Appl. Phys. Lett. 76 (2000) 924.
B. Giordanengo, A. Ben Moussa, J.F. Hochedez, A. Soltani, P. De Moor, K. Minoglou, P. Malinowski, J.Y. Duboz, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, R. Dahal, J. Li., J.Y. Lin, H.X. Jiang, EAS Publ. Ser. 37 (2009) 199.
J.C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J.D. Beck, M.A. Kinch, A. Huntington, L.A. Coldren, J. Decobert, N. Tscherptner, IEEE J. Sel. Top. Quantum Electron. 10 (2004) 777.
X. Guo, L.B. Rowland, G.T. Dunne, J.A. Fronheiser, P.M. Sandvik, A.L. Beck, J.C. Campbell, IEEE Photon. Tech. Lett. 18 (2006) 136.
H.D. Liu, X.Y. Guo, D. McIntosh, J.C. Campbell, IEEE Photon. Tech. Lett. 18 (2006) 2508.
J.P.R. David, C.H. Tan, IEEE J. Sel. Top. Quantum Electron. 14 (2008) 998.
Q. Zhou, D. McIntosh, H.D. Liu, J.C. Campbell, IEEE Photon. Tech. Lett. 23 (2011) 299.
W.S. Loh, B.K. Ng, S.I. Soloviev, H.Y. Cha, P.M. Sandvik, C.M. Johnson, J.P.R. David, IEEE Trans. Electron Devices 55 (2008) 1984.
B.K. Ng, J.P.R. David, R.C. Tozer, G.J. Rees, F. Yan, J.H. Zhao, M. Weiner, IEEE Trans. Electron Devices 50 (2003) 1724.
L.B. Rowland, J.L. Wyatt, J. Fronheiser, A.V. Vert, P.M. Sandvik, T. Borsa, B. Van Zeghbroeck, S. Babu, Mater. Sci. Forum 615 (2009) 869.
C.C. Sun, A.H. You, E.K. Wong, AIP Conf. Proc. 1250, 2010, p. 281.
C.C. Sun, A.H. You, E.K. Wong, AIP Conf. Proc. 1328, 2011, p. 277.
C.C. Sun, A.H. You, E.K. Wong, 10th IEEE Int. Conf. Semicond. Electron. 2012, p. 366.
C.C. Sun, A.H. You, E.K. Wong, Eur. Phys. J. Appl. Phys. 60 (2012) 10204.
A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, Appl. Phys. Lett. 71 (1997) 90.
P.A. Ivanov, V.E. Chelnokov, Semicond. Sci. Tech. 7 (1992) 863.
E.H.S. Hsing, J.F. Gray, Microelectron. J. 30 (1999) 1.
X. Bai, D. Mcintosh, H. Liu, J.C. Campbell, IEEE Photon. Tech. Lett. 19 (2007) 1822.
A.L. Beck, G. Karve, S. Wang, J. Ming, X. Guo, J.C. Campbell, IEEE Photon. Tech. Lett. 17 (2005) 1507.
R.J. McIntyre, IEEE Trans. Electron Devices ED-13 (1966) 164.