Can kaolin function as source of alumina in the synthesis of ZSM-5 without an organic template using a seeding technique?

Authors

  • Djoko Hartanto Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Lai Sin Yuan Universiti Teknologi Malaysia
  • Sestriana Mutia Sari Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Djarot Sugiarso Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Irmina Kris Murwani Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Taslim Ersam Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Didik Prasetyoko Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Hadi Nur Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v12n2.476

Keywords:

Kaolin, silicalite seed, ZSM-5 seed, without organic template, hydrothermal, crystallinity

Abstract

ZSM-5 has been successfully synthesized by hydrothermal method using Indonesian Bangka kaolin as the aluminium source without an organic template and preactivation by calcination utilizing silicalite and ZSM-5 seedings. There are three parameters that made kaolin a very suitable aluminium source in the synthesis of ZSM-5 by using this method. The first parameter was the presence of types of seeds (silicalite and ZSM-5). Secondly, the molar ratio of Si/Al was in the range of 40–60. Thirdly, the concentrations of NaOH were varied from 6 to 12 mol with 1800 mol water. Interestingly, the use of silicalite seed produced pure ZSM-5 zeolite, whereas analcime and mordenite appeared as side products when ZSM-5 was used as the seed. The above effects can be illustrated by the following mechanism. Kaolin was fully dissolved in the basic mixture solution containing concentrated NaOH and silica sols, and followed by the crystallization in the presence of seeds (silicalite and ZSM-5). The mechanism was postulated on the basis of XRF, XRD, 29Si and 27Al MAS NMR analyses.

Author Biographies

Djoko Hartanto, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Lai Sin Yuan, Universiti Teknologi Malaysia

Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Sestriana Mutia Sari, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Djarot Sugiarso, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Irmina Kris Murwani, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Taslim Ersam, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Didik Prasetyoko, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Department of Chemistry

Hadi Nur, Universiti Teknologi Malaysia

Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

References

R.J. Argauer, G. R. Landolt, Crystalline zeolite ZSM-5 and method of preparing the same, in US Patent. 1972.

C. Falamaki, M. Edrissi, M. Sohrabi, Studies on the crystallization kinetics of zeolite ZSM-5 with 1,6-hexanediol as a structure-directing agent. Zeolites. 19 (1997) 2-5.

N. Kumar, V. Nieminen, K. Demirkan, T. Salmi, D. Yu, Murzin, E. Laine, Effect of synthesis time and mode of stirring on physico-chemical and catalytic properties of ZSM-5 zeolite catalysts. Appl. Catal. A, 235 (2002) 113-123.

T. Danuthai, S. Jongpatiwut, T. Rirksomboon, S. Osuwan, D.E. Resasco, Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst. Appl. Catal. A, 361 (2009) 99-105.

S.E. Lehman and S.C. Larsen, Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ. Sci. Nano. 1 (2014) 200-213.

K. Abdmeziem, B. Siffert, Synthesis of large crystals of ZSM-5 zeolite from a smectite-type clay material. App. Clay Sci. 8 (1994) 437-447.

D.J. Kim, H.S. Chung, Synthesis and characterization of ZSM-5 zeolite from serpentine. App. Clay Sci. 24 (2003) 69-77.

M. Chareonpanich, T. Namto, P. Kongkachuichay, J. Limtrakul, Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process. Technol. 85 (2004) 1623-1634.

H. Cheng, Q. Liu, J. Yang, S. Ma, R. L. Frost, The thermal behavior of kaolinite intercalation complexes - A review. Thermochim. Acta. 545 (2012) 1-13.

M. Khatamian, M. Irani, Preparation and characterization of nanosized ZSM-5 zeolite using Kaolin and investigation of Kaolin content, crystallization time and temperature changes on the size and crystallinity of products. J. Iranian Chem. Soc. 6 (2009) 187-194.

T. Armaroli, L.J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, G. Busca, Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. App. Catal. A 306 (2006) 78-84.

Y. Cheng, R.H. Liao, J.S. Li, X.Y. Sun, L.J. Wang, Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template. J. Mater. Process. Technol. 206 (2008) 445-452.

N. Y. Kang, B. S. Song, C. W. Lee, W. C. Choi, K. B. Yoon, Y. Park, The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method. Micropor. Mesopor. Mater. 118 (2009) 361-372.

R.L. Frost, J. Kristof, L. Rintoul, J.T. Kloprogge, Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim. Acta A. 56 (2000) 1681-1691.

P.M. Costanzo, J.R.F. Giese, Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite (10Å). Clay Clay Miner. 33 (1985) 415-423.

H. Ming, Modification of kaolinite by controlled hydrothermal deuteration-a DRIFT spectroscopic study. Clay Miner. 39 (2004) 349-362.

W.N. Martens, R. L. Frost, J. Kristof, E. Horvath, Modification of kaolinite surfaces through intercalation with deuterated dimethylsulfoxide. J. Phys. Chem. B. 106 (2002) 4162-4171.

F.M. Alabi, M. O. Omojola, Potentials of Nigerian calcined kaolin as paint pigment. Afr. J. Pure Appl. Chem. 7(12) (2013) 410-417.

I.M. Alwaan, A study on the adhesion of styrene-butadiene rubber with red kaolinite on aluminum surface. ISRN Chem. Eng. 2014 (2014) 1-7.

D.T. Ngoc, T.H. Pham, K.D.H. Nguyen, Synthesis, characterization and application of nanozeolite NaX from Vietnamese kaolin. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 1-12.

A.S. Kovo, O. Hernandez, S.M. Holmes, Synthesis and characterization of zeolite Y and ZSM-5 from Nigerian Ahoko Kaolin using a novel, lower temperature, metakaolinization technique. J. Mater. Chem. 19 (2009) 6207-6212.

A.A.F. Lafi, S.K. Matam, H.A. Hodali, New synthesis of ZSM-5 from high-silica Kaolinite and its use in vapor-phase conversion of 1-phenylethanol to styrene. Ind. Eng. Chem. Res. 54 (2015) 3754-3760.

S.-H. Sun, J.-T. Ma, X.-H. Gao, Synthesis of ZSM-5 on kaolin microspheres in the absence of an organic amine template. Clay Miner. 42 (2007) 203-211.

S.P. Zhdanov, N. N. Feoktistova, N. I. Kozlova, M. M. Piryutko, Silicalites and their thermal stability. Inorg. Chem. 34(12) (1985) 2467-2472.

V.R. Choudhary, S.G. Pataskar, Thermal Decomposition of TPA-ZSM-5 zeolites: effect of gas atmosphere and Si/Al ratio. Thermochim Acta 97 (1986) 1-10.

M.J. Rice, A.K. Chakraborty, A.T. Bell, Al next nearest neighbor, ring occupation, and proximity statistics in ZSM-5. J. Catal. 186 (1999) 222-227.

D. Hartanto, O. Saputro, W.P. Utomo, A. Rosidah, D. Sugiarso, T. Ersam, H. Nur, D. Prasetyoko, Synthesis of ZSM-5 directly from kaolin without organic template: Part-1: Effect of crystallization time. Asian J. Chem. 27(12) (2015) 1-5.

P. Payra, P.K. Dutta, Handbook of zeolite science and technology. Zeolites: A Primer, ed. S.M. Auerbach, K.A. Carrado, and P.K. Dutta. 2003, New York, Basel: Marceld Ekkeirnc, Inc.

Downloads

Published

28-08-2016