Imazalil sulphate pesticide degradation using silver loaded hollow anatase TiO2 under UV light irradiation

Authors

  • Afrouz Baharvand Universiti Teknologi Malaysia
  • Rusmidah Ali Universiti Teknologi Malaysia
  • Hadi Nur Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v12n2.474

Keywords:

Silver nanoparticles, hollow anatase TiO2, imazalil sulphate, UV irradiation, photodegradation.

Abstract

Silver loaded hollow anatase TiO2 particles with the location of silver are inside (Ag@TiO2) and outside (Ag/TiO2) the hollow TiO2 structure have been successfully synthesized by a deposition-precipitation and template methods. The effects of silver nanoparticles location on Ag@TiO2 andAg@TiO2 has been evaluated in the photodegradation efficiency of imazalil sulphate pesticide in aqueous suspension under ultraviolet irradiation. The Ag/TiO2 showed better photocatalytic performance for the degradation of imazalil sulphate, compared to Ag@TiO2 and hollow TiO2 microspheres. A higher photocatalytic activity of Ag/TiO2 compared to Ag@TiO2 and hollow TiO2 can be considered as an evidence of enhanced charge separation of Ag/TiO2  photocatalyst as confirmed by photoluminescence spectroscopy.

Author Biographies

Afrouz Baharvand, Universiti Teknologi Malaysia

Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Rusmidah Ali, Universiti Teknologi Malaysia

Department of Chemistry, Faculty of Science

Hadi Nur, Universiti Teknologi Malaysia

Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

References

Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A. 2010. Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3, 135-140.

Albiter, E., Hai, Z., Alfaro, S., Remita, H., Valenzuela, M.A., Colbeau-Justin, C. 2013. A comparative study of photo-assisted deposition of silver nanoparticles on TiO2. J. Nanosci. Nanotechnol. 13, 4943-4948.

Ashkarran, A.A., Aghigh, S.M., kavianipour, M., Farahani, N. J. 2011. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl Phys. 11, 1048-1055.

Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., Watanabe, T. 2008. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676-1680.

Baharvand, A., Ali, R., Yusof, A.M., Ibrahim, A. N., Chandren, S., Nur, H. 2014. Preparation of Anatase Hollow TiO2 Spheres and Their Photocatalytic Activity in the Photodegradation of Chlorpyrifos. J. Chinese Chem. Soc. 61, 1211-1216.

Behnajady, M. A., Modirshahla, N., Shokri, M., Rad, B. 2008. Enhancement of photocatalytic activity of TiO2 nanoparticles by Silver doping: Photodeposition versus liquid impregnation methods. Global Nest J. 10, 1-7.

Chan, S. C., Barteau, M.A. 2005. Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir 21, 5588-5595.

Chatterjee, D., Mahata, A. 2002. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J. Photochem. Photobiol. A 153, 199-204.

Chen, H.W., Ku, Y., Kuo, Y.L. 2007b. Photodegradation of o-cresol with Ag deposited on TiO2 under visible and UV light irradiation. Chem. Eng. Technol. 30, 1242-1247.

Chiarello, G.L., Selli, E., Forni, L. 2008. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Appl. Catal. B 84, 332-339.

Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D. 2004. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 126, 3868-3879.

Grabowska, E., Zaleska, A., Sorgues, S., Kunst, M., Etcheberry, A., Colbeau-Justin, C., Remita, H. 2013. Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys, Chem. C 117, 1955-1962.

Herrmann, J.-M. 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53, 115-129.

Hirakawa, T., Kamat, P.V. 2004a. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645-5647.

Hirakawa, T., Kamat, P.V. 2004b. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645-5647.

Hirakawa, T., Kamat, P.V. 2005. Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation. J. Am. Chem. Soc. 127, 3928-3934.

Ismail, A. A. 2012. Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater. 149, 69-75.

Jang, S.-R., Vittal, R., Lee, J., Jeong, N., Kim, K.-J. 2006. Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells. Chem. Commun. 103-105.

Jiang, L., Zhou, G., Mi, J., Wu, Z. 2012. Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst. Catal. Commun. 24, 48-51.

Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K., Bandow, S., Iijima, S. 2007. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24, 547-550.

Kubo, W., Tatsuma, T. 2006. Mechanisms of photocatalytic remote oxidation. J. Am. Chem. Soc. 128, 16034-16035.

Lee, M. -K., Kim, T.G., Kim, W., Sung, Y.-M. 2008b. Surface plasmon resonance (SPR) electron and energy transfer in noble metal–zinc oxide composite nanocrystals. J. Phys. Chem. C 112, 10079-10082.

Lenzi, G. G., Fávero, C.V.B., Colpini, L.M.S., Bernabe, H., Baesso, M.L., Specchia, S., Santos, O. A. A. 2011. Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods. Desalination. 270, 241-247.

Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., Lu, Y. 2007a. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538-4539.

Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H., Lu, Y. 2007b. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129, 8406-8407.

Liang, Y.-C., Wang, C.-C., Kei, C. -C., Hsueh, Y.-C., Cho, W.-H., Perng, T.-P. 2011. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. J. Phys. Chem. C 115, 9498-9502.

Liga, M.V., Bryant, E.L., Colvin, V.L., Li, Q. 2011. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 45, 535-544.

Linic, S., Christopher, P., and Ingram, D.B. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911-921.

Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., Jiazhong, S. 2006. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773-1787.

Nur, H. 2006. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater. Sci. Eng. B 133, 49-54.

Ong, W. L., Gao, M., and Ho, G. W. 2013. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 5, 11283-11290.

Pastoriza-Santos, I., Koktysh, D.S., Mamedov, A.A., Giersig, M., Kotov, N.A., Liz-Marzán, L.M. 2000. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16, 2731-2735.

Scirè, S., Crisafulli, C., Giuffrida, S., Mazza, C., Riccobene, P.M., Pistone, A., Ventimiglia, G., Bongiorno, C., Spinella, C. 2009. Supported silver catalysts prepared by deposition in aqueous solution of Ag nanoparticles obtained through a photochemical approach. Appl. Catal A 367, 138-145.

Sclafani, A., Herrmann, J.-M. 1998. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol. A 113, 181-188.

Seery, M.K., George, R., Floris, P., Pillai, S. C. 2007. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189, 258-263.

Sharma, V K., Yngard, R.A., Lin, Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83-96.

Subrahmanyam, A., Biju, K. P., Rajesh, P., Kumar, K.J., Kiran, M.R. 2012. Surface modification of sol gel TiO2 surface with sputtered metallic silver for Sun light photocatalytic activity: Initial studies. Sol. Energ. Mater. Sol. Cells 101, 241-248.

Subramanian, V., Wolf, E.E., Kamat, P.V. 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am. Chem. Soc. 126, 4943-4950.

Tada, H., Kubo, Y., Akazawa, M., Ito, S. 1998. Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants. 14, 2936-2939.

Tao, A., Sinsermsuksakul, P., Yang, P. 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edit. 45, 4597-4601.

Tom, R.T., Nair, A. S., Singh, N., Aslam, M., Nagendra, C., Philip, R., Vijayamohanan, K., Pradeep, T. 2003. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19, 3439-3445.

Subramanian, V., Wolf, E.E., Kamat, P.V. 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am. Chem. Soc. 126, 4943-4950.

Tada, H., Kubo, Y., Akazawa, M., Ito, S. 1998. Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants. 14, 2936-2939.

Tao, A., Sinsermsuksakul, P., Yang, P. 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edit. 45, 4597-4601.

Tom, R.T., Nair, A. S., Singh, N., Aslam, M., Nagendra, C., Philip, R., Vijayamohanan, K., Pradeep, T. 2003. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19, 3439-3445.

Ung, T., Liz-Marzán, L.M., Mulvaney, P. 1998. Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir 14, 3740-3748.

Wang, S., Qian, H., Hu, Y., Dai, W., Zhong, Y., Chen, J., Hu, X. 2013. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity. Dalton Trans. 42, 1122-1128.

Wodka, D., Bielańska, E. b., Socha, R.P., Elżbieciak-Wodka, M., Gurgul, J., Nowak, P., Warszyński, P., Kumakiri, I. 2010. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces 2, 1945-1953.

Xie, K., Sun, L., Wang, C., Lai, Y., Wang, M., Chen, H., Lin, C. 2010. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211-7218.

Xu, M.-W., Bao, S.-J., and Zhang, X.-G. 2005. Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194-2198.

Yu, J., Liu, S., Yu, H. 2007b. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. J. Catal. 249, 59-66.

Zhang, H., Liang, C., Liu, J., Tian, Z., Wang, G., Cai, W. 2012) Defect-mediated ormation of Ag cluster-doped TiO2 nanoparticles for efficient photodegradation of pentachlorophenol. Langmuir 28, 3938-3944.

Zhang, S., Peng, F., Wang, H., Yu, H., Zhang, S., Yang, J., Zhao, H. 2011d. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun. 12, 689-693.

Zhou, J., Cheng, Y., Yu, J. 2011. Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photochem. Photobiol. A 23, 82-87.

Zielińska, A., Kowalska, E., Sobczak, J.W., Łącka, I., Gazda, M., Ohtani, B., Hupka, J., Zaleska, A. 2010. Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep. Purif. Technol. 72, 309-318.

Downloads

Published

28-08-2016