Imazalil sulphate pesticide degradation using silver loaded hollow anatase TiO2 under UV light irradiation
DOI:
https://doi.org/10.11113/mjfas.v12n2.474Keywords:
Silver nanoparticles, hollow anatase TiO2, imazalil sulphate, UV irradiation, photodegradation.Abstract
Silver loaded hollow anatase TiO2 particles with the location of silver are inside (Ag@TiO2) and outside (Ag/TiO2) the hollow TiO2 structure have been successfully synthesized by a deposition-precipitation and template methods. The effects of silver nanoparticles location on Ag@TiO2 andAg@TiO2 has been evaluated in the photodegradation efficiency of imazalil sulphate pesticide in aqueous suspension under ultraviolet irradiation. The Ag/TiO2 showed better photocatalytic performance for the degradation of imazalil sulphate, compared to Ag@TiO2 and hollow TiO2 microspheres. A higher photocatalytic activity of Ag/TiO2 compared to Ag@TiO2 and hollow TiO2 can be considered as an evidence of enhanced charge separation of Ag/TiO2 photocatalyst as confirmed by photoluminescence spectroscopy.
References
Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A. 2010. Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3, 135-140.
Albiter, E., Hai, Z., Alfaro, S., Remita, H., Valenzuela, M.A., Colbeau-Justin, C. 2013. A comparative study of photo-assisted deposition of silver nanoparticles on TiO2. J. Nanosci. Nanotechnol. 13, 4943-4948.
Ashkarran, A.A., Aghigh, S.M., kavianipour, M., Farahani, N. J. 2011. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl Phys. 11, 1048-1055.
Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., Watanabe, T. 2008. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676-1680.
Baharvand, A., Ali, R., Yusof, A.M., Ibrahim, A. N., Chandren, S., Nur, H. 2014. Preparation of Anatase Hollow TiO2 Spheres and Their Photocatalytic Activity in the Photodegradation of Chlorpyrifos. J. Chinese Chem. Soc. 61, 1211-1216.
Behnajady, M. A., Modirshahla, N., Shokri, M., Rad, B. 2008. Enhancement of photocatalytic activity of TiO2 nanoparticles by Silver doping: Photodeposition versus liquid impregnation methods. Global Nest J. 10, 1-7.
Chan, S. C., Barteau, M.A. 2005. Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir 21, 5588-5595.
Chatterjee, D., Mahata, A. 2002. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J. Photochem. Photobiol. A 153, 199-204.
Chen, H.W., Ku, Y., Kuo, Y.L. 2007b. Photodegradation of o-cresol with Ag deposited on TiO2 under visible and UV light irradiation. Chem. Eng. Technol. 30, 1242-1247.
Chiarello, G.L., Selli, E., Forni, L. 2008. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Appl. Catal. B 84, 332-339.
Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D. 2004. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 126, 3868-3879.
Grabowska, E., Zaleska, A., Sorgues, S., Kunst, M., Etcheberry, A., Colbeau-Justin, C., Remita, H. 2013. Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys, Chem. C 117, 1955-1962.
Herrmann, J.-M. 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53, 115-129.
Hirakawa, T., Kamat, P.V. 2004a. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645-5647.
Hirakawa, T., Kamat, P.V. 2004b. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645-5647.
Hirakawa, T., Kamat, P.V. 2005. Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation. J. Am. Chem. Soc. 127, 3928-3934.
Ismail, A. A. 2012. Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater. 149, 69-75.
Jang, S.-R., Vittal, R., Lee, J., Jeong, N., Kim, K.-J. 2006. Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells. Chem. Commun. 103-105.
Jiang, L., Zhou, G., Mi, J., Wu, Z. 2012. Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst. Catal. Commun. 24, 48-51.
Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K., Bandow, S., Iijima, S. 2007. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24, 547-550.
Kubo, W., Tatsuma, T. 2006. Mechanisms of photocatalytic remote oxidation. J. Am. Chem. Soc. 128, 16034-16035.
Lee, M. -K., Kim, T.G., Kim, W., Sung, Y.-M. 2008b. Surface plasmon resonance (SPR) electron and energy transfer in noble metal–zinc oxide composite nanocrystals. J. Phys. Chem. C 112, 10079-10082.
Lenzi, G. G., Fávero, C.V.B., Colpini, L.M.S., Bernabe, H., Baesso, M.L., Specchia, S., Santos, O. A. A. 2011. Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods. Desalination. 270, 241-247.
Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., Lu, Y. 2007a. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538-4539.
Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H., Lu, Y. 2007b. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129, 8406-8407.
Liang, Y.-C., Wang, C.-C., Kei, C. -C., Hsueh, Y.-C., Cho, W.-H., Perng, T.-P. 2011. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. J. Phys. Chem. C 115, 9498-9502.
Liga, M.V., Bryant, E.L., Colvin, V.L., Li, Q. 2011. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 45, 535-544.
Linic, S., Christopher, P., and Ingram, D.B. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911-921.
Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., Jiazhong, S. 2006. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773-1787.
Nur, H. 2006. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater. Sci. Eng. B 133, 49-54.
Ong, W. L., Gao, M., and Ho, G. W. 2013. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 5, 11283-11290.
Pastoriza-Santos, I., Koktysh, D.S., Mamedov, A.A., Giersig, M., Kotov, N.A., Liz-Marzán, L.M. 2000. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16, 2731-2735.
Scirè, S., Crisafulli, C., Giuffrida, S., Mazza, C., Riccobene, P.M., Pistone, A., Ventimiglia, G., Bongiorno, C., Spinella, C. 2009. Supported silver catalysts prepared by deposition in aqueous solution of Ag nanoparticles obtained through a photochemical approach. Appl. Catal A 367, 138-145.
Sclafani, A., Herrmann, J.-M. 1998. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol. A 113, 181-188.
Seery, M.K., George, R., Floris, P., Pillai, S. C. 2007. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189, 258-263.
Sharma, V K., Yngard, R.A., Lin, Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83-96.
Subrahmanyam, A., Biju, K. P., Rajesh, P., Kumar, K.J., Kiran, M.R. 2012. Surface modification of sol gel TiO2 surface with sputtered metallic silver for Sun light photocatalytic activity: Initial studies. Sol. Energ. Mater. Sol. Cells 101, 241-248.
Subramanian, V., Wolf, E.E., Kamat, P.V. 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am. Chem. Soc. 126, 4943-4950.
Tada, H., Kubo, Y., Akazawa, M., Ito, S. 1998. Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants. 14, 2936-2939.
Tao, A., Sinsermsuksakul, P., Yang, P. 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edit. 45, 4597-4601.
Tom, R.T., Nair, A. S., Singh, N., Aslam, M., Nagendra, C., Philip, R., Vijayamohanan, K., Pradeep, T. 2003. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19, 3439-3445.
Subramanian, V., Wolf, E.E., Kamat, P.V. 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am. Chem. Soc. 126, 4943-4950.
Tada, H., Kubo, Y., Akazawa, M., Ito, S. 1998. Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants. 14, 2936-2939.
Tao, A., Sinsermsuksakul, P., Yang, P. 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edit. 45, 4597-4601.
Tom, R.T., Nair, A. S., Singh, N., Aslam, M., Nagendra, C., Philip, R., Vijayamohanan, K., Pradeep, T. 2003. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19, 3439-3445.
Ung, T., Liz-Marzán, L.M., Mulvaney, P. 1998. Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir 14, 3740-3748.
Wang, S., Qian, H., Hu, Y., Dai, W., Zhong, Y., Chen, J., Hu, X. 2013. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity. Dalton Trans. 42, 1122-1128.
Wodka, D., Bielańska, E. b., Socha, R.P., Elżbieciak-Wodka, M., Gurgul, J., Nowak, P., Warszyński, P., Kumakiri, I. 2010. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces 2, 1945-1953.
Xie, K., Sun, L., Wang, C., Lai, Y., Wang, M., Chen, H., Lin, C. 2010. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211-7218.
Xu, M.-W., Bao, S.-J., and Zhang, X.-G. 2005. Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194-2198.
Yu, J., Liu, S., Yu, H. 2007b. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. J. Catal. 249, 59-66.
Zhang, H., Liang, C., Liu, J., Tian, Z., Wang, G., Cai, W. 2012) Defect-mediated ormation of Ag cluster-doped TiO2 nanoparticles for efficient photodegradation of pentachlorophenol. Langmuir 28, 3938-3944.
Zhang, S., Peng, F., Wang, H., Yu, H., Zhang, S., Yang, J., Zhao, H. 2011d. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun. 12, 689-693.
Zhou, J., Cheng, Y., Yu, J. 2011. Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photochem. Photobiol. A 23, 82-87.
Zielińska, A., Kowalska, E., Sobczak, J.W., Łącka, I., Gazda, M., Ohtani, B., Hupka, J., Zaleska, A. 2010. Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep. Purif. Technol. 72, 309-318.