Influence of implantation nitrogen gas on electrical properties of magnetic CNT-Fe3% and CNT-Fe5% composite


  • Mashadi Sunandar PSTBM-BATAN
  • Patricius Purwanto PSTBM-BATAN



Composite CNT-Fe, Implantation, Magnetics, Conductivity, Surface


The composite of CNT–Fe were made by mixing CNT and Fe powder with the variance of Fe starting from 3% and 5% weight. Then the sample is milling for 2 hours using High Energy Milling (HEM). The CNT-Fe Composite to be had done implantasion  with nitrogen gas  for 5 hour and 8 hour. The result of magnetic parameter of composite CNT-Fe3% and  CNT-Fe5%  with VSM (Vibrating Sample Magnetometer) method shows that the remanent magnetic (Mr) and saturation magnetic (Ms) increased, and the coersive magnetic (Hc) decreased with the increasing of weight percent of Fe. The result of electrical properties of  composite CNT-Fe3% and  CNT-Fe5%    using LCR instrument indicated that conductivities value of composite CNT-Fe3%  and  MWCNT-Fe5%    are  increased with the  increasing of Fe weight. The surface morphology of composite CNT-Fe3% and  CNT-Fe5%    was done with TEM (Transmition Electron Microscopy) with the result that Fe was had into CNT.




Shanov,V., Heung Yun, Y., Schulz, M J.,2006. Synthesis and Characterization of Carbon Nanotube Materials. Journal of the Universty of Chemical Technology and Metalurgy 41, 377-390.

Yulkifli., Parwanta, K J., Ramli and Djamal M., 2009. Pengukuan Magnetoresistansi Film Tipis dan Hubungannya Dengan Ketebalan Lapisan Tipis Feromagnetik/Non magnetik. Journal Sains Materi Indonesia, Edisi Khusus Desember, 161-166.

Blanton, T., Misture, S., Dontula, N and Zdieszynski, S., 2011. Journal Powder Diffraction 26, 114-118.

Li ,Q., Yuan Li., Xiefei Zhang., at al, 2007. Structure Dependent Electrical Properties of Carbon Nanotube Fibers. Advance Materials 19, 3358-3363.

Harris, P J F. , 2004. Carbon Nanotube Composite. International Materials Review 49, 31-43.

Soo Kim ,B., Do Suh, K., Kim, B., 2008. Electrical Properties of Composite Films Using Carbon Nanotube/Polyelectrolyte Sel-Assembled Particles. Macromolecular Research 16, 76-80.

Sup So, D., Huh, H., Ham, H., Bo Shim, K., Woo Kim ,H., Kang I., 2011. Electrical Impedance Properties of a Nanoweb Electrode embedded Carbon Nanotube for a Bio-Chemical Sensor. Journal of Ceramic Processing Research 12, 343-347.

Bandaru, P R., 2007. Electrical Properties and Application of Carbon Nanotube Structure. Journal of Nanoscience and Nanotechnology 7, 1-29.

Young Kim,T., Ryeol Lee, K., Yong Eun, K., and Hwan, O K., 2003.Carbon Nanotube Growth enhanced by Nitrogen Incorporation. Chemical Physics letters 372, 603-607.

Sinha, N., Ma, J and Yeow, J T W., 2006. Carbon Nanotube-Based Sensor. Journal of Nanoscience and Nanotechonology 6, 573-590.

Sinha, N and Yeow, J TW., 2005. Carbon Nanotube for Biomedical Application. Transaction on Nanoboisciense 4, 1-16.

Padma, K P and Yashonath, S., 2006. Ionic Conduction in The Solid State. Journal of Chemical Science 118, 134-154.

Ionescu, M I.,Zhang, Y., Li,R.,Abou-Rachid, H.,Sun, X., 2012. Nitrogen-Doping effect on The Growth, Structure and electrical Performance of Carbon Nanotubes Obtained by Spray Pyrolysis Method. Applied Surface science 258, 4563-4568.

Lu, C and May, Y.W.,2008. Anamalous electrical Conductivity and Percolation inCarbonNanotubes. Journal Materials Science 43, 601-606.

Hall,S., 2004. Superionic: Crystal Structure and Conduction Processes. Report on Progress in Physics 67, 1233-1314.

Purwanto, P dan Salim Mustofa.,2014. Analisis Penambahan Fe Terhadap Sifat Listrik dan Magnet Komposit MWCNT-Fe. Jurnal Kimia dan Kemasan 36, 237-24