Stability of water-in-oil emulsion in liquid membrane prospect

Authors

  • Norela Jusoh Universiti Teknologi Malaysia
  • Norasikin Othman Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v12n3.429

Keywords:

Emulsion Liquid Membrane, Green, Stability, Palm Oil

Abstract

Emulsion liquid membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. ELM promotes many advantages including simple operation, non-equilibrium mass transfer, high selectivity, low energy requirements, and simultaneous extraction and stripping process in a single step process. New development in ELM system incorporated with a green solvent (palm oil) was attempted instead of using commercial organic solvent. The important aspects must be considered for a successful ELM process is the stability of the liquid membrane. In the current work the effect of various parameter which are organic to internal ratio, emulsifying speed, surfactant concentration, and emulsifying time on green ELM stability was investigated. The results show that the most stable emulsion was observed at 3:1 organic to internal ratio, 7000 rpm speed, 3 % (w/v) surfactant concentration, and 5 minute emulsifying time. The emulsion obtained was stable up to 1/2 hour and sufficient and sufficient for extraction process. Therefore, green solvent has high potential to be applied in emulsion liquid membrane process. 

Author Biographies

Norela Jusoh, Universiti Teknologi Malaysia

Department of Chemical Engineering, Faculty of Chemical and Energy Engineering

Norasikin Othman, Universiti Teknologi Malaysia

1. Department of Chemical Engineering, Faculty of Chemical and Energy Engineering

2.Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute of Scientific and Industrial Reasearch

References

N. Othman, H. Mat, M. Goto, Solvent. Extr. Res. Dev. 12 (2005) 27.

Y. Hong, W. Hong, D. Han, . Biotechnol. Bioproc. E. 6 (2001) 386.

S. Gupta, M. Chakraborty, Z.V.P. Murthy, J. Dispersion Sci. Technol. 34 (2013) 1733.

H.R. Mortaheb, M.H. Amini, F. Sadeghian, B. Mokhtarani, H. Daneshyar, J. Hazard. Mater. 160 (2008) 582.

A. Balasubramanian, S. Venkatesan, CLEAN – Soil, Air, Water. 42 (2014) 64.

N.F.M. Noah, N. Othman, N. Jusoh, J. Taiwan Inst. Chem. Eng.

T. Kakoi, N. Horinouchi, M. Goto, F. Nakashio, J. Membr. Sci. 118 (1996) 63.

R.N.R. Sulaiman, N. Othman, N.A.S. Amin, J. Ind. Eng. Chem. 20 (2014) 3243.

N. Othman, K.H. Chan, M. Goto, H. Mat, Solvent. Extr. Res. Dev. 13 (2006) 191.

N. Othman, H. Mat, M. Goto, J. Membr. Sci. 282 (2006) 171.

O. Zing-Yi, N. Othman, M. Mohamad, R. Rashid, Int. J. Global Warming. 6 (2014) 270.

L. Zeng, Y. Zhang, Q. Liu, L. Yang, J. Xiao, X. Liu, Y. Yang, Chem. Eng. J. 289 (2016) 452.

S.C. Lee, K.-S. Hyun, J. Membr. Sci. 350 (2010) 333.

S.C. Lee, J. Membr. Sci. 381 (2011) 237.

W.S. Ho, K.S. Kamalesh, Membrane Handbook, Chapman & Hall, New York, 1992.

M. Chakraborty, C. Bhattacharya, S. Datta, Chapter 4 - Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives, Elsevier, Amsterdam, 2010.

N. Othman, S.N. Zailani, N. Mili, J. Hazard. Mater. 198 (2011) 103.

M.C. Chow, C.C. Ho, J. Am. Oil Chem. Soc. 73 (1996) 47.

S. Bjorkegren, R.F. Karimi, A Study of the Heavy Metal Extraction Process using Emulsion Liquid Membranes, Chalmers University of Technology, Sweden, 2012.

V. Badgujar, N.K. Rastogi, Desalin. Water Treat. 36 (2011) 187.

M.P. Jilska, W.S. Geoff, Use of Emulsion Liquid Membrane Systems in Chemical and Biotechnological Separations, CRC Press, 2008.

W.S. Ho, T.A. Hatton, E.N. Lightfoot, N.N. Li, AIChE J. 28 (1982) 662.

N. Othman, N. Mili, A. Idris, S.N. Zailani, Sustain. Membr. Technol. Energy Water Environ. (2012) 221.

H.C. Joshi, I.P. Pandey, A. Kumar, N. Garg, Adv. Pure Appl. Chem. 1 (2012) 7.

Downloads

Published

09-01-2017