The effects of gas flow rate and annealing on the morphological properties of zinc oxide nanostructures thin film using chemical vapour deposition process

Authors

  • W. H. Khoo Universiti Teknologi Malaysia
  • S. M. Sultan Universiti Teknologi Malaysia
  • M. Z. Sahdan Universiti Tun Hussein Onn Malaysia

DOI:

https://doi.org/10.11113/mjfas.v13n1.428

Keywords:

ZnO Nanostructures, Chemical Vapour Deposition (CVD), Gas Flow Rate, Annealing

Abstract

Zinc Oxide nanostructures thin films have been deposited on glass substrates by using chemical vapour deposition technique at 1000°C assisted by gas blocker. Glass substrates was sputtered by ~5nm of gold to form a catalyst layer on top of glass. Different gas flow rates of 0.05, 0.10, 0.20, 0.40 L/min were used in the deposition. After the deposition, the layer was annealed at temperatures of 500°C for 1 hours under atmospheric pressure. The surface morphologies of ZnO thin film were investigated field emission scanning electron microscope (FESEM). X-ray diffraction (XRD) results confirm the presence of ZnO layer with high peak of (002) crystal orientation and shows improvement after annealing. The mechanism of ZnO nanostructures formation will be discussed in this paper

Author Biography

W. H. Khoo, Universiti Teknologi Malaysia

Faculty of Electrical Engineering

References

A. Kradzimska, T. Jesionowski, Materials, 7, (2014) 2833-2881

H. Wan, H. E. Ruda, J. Mater. Sci.: Mater Electron (2010) 21:1014-1019.

T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, et al., The Journal of Physical Chemistry c, vol. 114, (2010) pp. 6849-6853.

D.Rouxel, B. Vincent, L. Badie, F. D. Dos Santos, et al., Applied surface science, vol. 279, (2013) pp. 204-211.

J.Zhao, S. Wu, J. Liu, H. Liu, S. Gong, D. Zhou, Sensor and Actuators B: Chemical, vol. 145, (2010) pp. 788-793.

H. D. Setiabudi, A.A. Jalil, S. Triwahyono, N. H. N. Kamarudin, R. R. Mukti, Appl. Catal. A: Gen. 417-418 (2012) 190.

K. Ebitani, J. Konishi, H. Hattori, J. Catal. 130 (1991) 257.

T. Shishido, H. Hattori, Appl. Catal. A: Gen. 146 (1996) 157.

S. Triwahyono, T. Yamada, H. Hattori, Catal. Lett. 85 (2003) 109.

S. Triwahyono, Z. Abdullah, A.A. Jalil, J. Nat. Gas Chem. 15 (2006) 247.

S. Triwahyono, T. Yamada, H. Hattori, Appl. Catal. A: Gen. 242 (2003) 101.

N. N. Ruslan, N .A. Fadzlillah, A .H. Karim, A. A. Jalil, S. Triwahyono, Appl. Catal. A: Gen. 406 (2011) 102.

W. C. Conner, J.L. Falconer, Chem. Rev. 95 (1995) 759.

O. B. Yang, S. I. Woo, in: L. Guczi, F. Solymosi, P. Tetenyi (Eds.), New Frontiers in Catalysis, Proc. 10th Int. Cong. Catal., Budapest, Hungary,19-24 July 1992, Elsevier Science Publishers B.V., Amsterdam, 1993, p. 671.

A. K. Aboul-Gheit, A. E. Awadallah, N. A. K. Aboul-Gheit, E. S. A. Solyman, M. A. Abdel-Aaty, Appl. Catal. A: Gen. 334 (2008) 304.

A. Jentys, R.R . Mukti, H. Tanaka, J. A. Lercher, Microporous Mesoporous Mater. 90 (2006) 284.

M. A. A. Aziz, N. H. N. Kamarudin, H. D. Setiabudi, H. Hamdan, A.A. Jalil, S. Triwahyono, J. Nat. Gas Chem. 21 (2012) 29

Downloads

Published

02-04-2017