Density functional theory study of electronic properties of Bi2Se3 and Bi2Te3

Authors

  • Abdullahi Lawal Universiti Teknologi Malaysia
  • Amiruddin Shaari Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v12n3.424

Keywords:

Topological insulator, Quantum-Espresso, DFT

Abstract

Topological insulators are layered materials via van der Waals interactions with hexagonal unit cell similar to that of graphene. The exciting features of Bi2Se3 and Bi2Te3 topological insulators their zero band gap surface states exhibiting linear dispersion at the Fermi energy. We present here first principles study pertaining to electronics properties of Bi2Se3 and Bi2Te3 compound with and without spin-orbit interaction using density functional theory (DFT). Total density of state (DOS), partial density of state (PDOS) and band structure where determined by Quantum-Espresso simulation package which uses plane wave basis and pseudopotential for the core electrons, while treating exchange-correlation potential with generalized gradient approximation (GGA). From our computations, the obtained results were found to be consistent with the available experimental results. 

Author Biographies

Abdullahi Lawal, Universiti Teknologi Malaysia

Department of Physics, Faculty of Science, Universiti Teknologi Malaysia

Amiruddin Shaari, Universiti Teknologi Malaysia

Department of Physics, Faculty of Science, Universiti Teknologi Malaysia

References

M.Z. Hasan, C.L. Kane, Reviews of Modern Physics, 82 (2010) 3045.

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, H. Zhang.

O.V. Yazyev, J.E. Moore, S.G. Louie, Physical review letters, 105 (2010) 266806.

J. Kaczkowski, A. Jezierski, Materials Science Poland, 26 (2008) 939--845.

A. Sharma, B. Bhattacharyya, A. Srivastava, T. Senguttuvan, S. Husale, Scientific reports, 6 (2016).

Z. Wang, H. Mu, C. Zhao, Q. Bao, H. Zhang, Optical Engineering, 55 (2016) 081314-081314.

H. Zhu, C.A. Richter, E. Zhao, J.E. Bonevich, W.A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, Scientific reports, 3 (2013).

X. Gao, M. Zhou, Y. Cheng, G. Ji, Philosophical Magazine, (2016) 1-15.

X. Luo, M.B. Sullivan, S.Y. Quek, Physical Review B, 86 (2012) 184111.

Y. Cao, J. Waugh, X. Zhang, J.-W. Luo, Q. Wang, T. Reber, S. Mo, Z. Xu, A. Yang, J. Schneeloch, Nature Physics, 9 (2013) 499-504.

W. Zhang, R. Yu, H.-J. Zhang, X. Dai, Z. Fang, New Journal of Physics, 12 (2010) 065013.

S. Mishra, S. Satpathy, O. Jepsen, Journal of Physics: Condensed Matter, 9 (1997) 461.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, Journal of Physics: Condensed Matter, 21 (2009) 395502.

J.J. Stewart, Journal of computer-aided molecular design, 4 (1990) 1-103.

A. Zimmer, N. Stein, L. Johann, S. Van Gils, H. Terryn, E. Stijns, C. Boulanger, Journal of The Electrochemical Society, 152 (2005) G772-G777.

P. Larson, V. Greanya, W. Tonjes, R. Liu, S. Mahanti, C. Olson, Physical Review B, 65 (2002) 085108.

Y. Xu, Z. Gan, S.-C. Zhang, Physical review letters, 112 (2014) 226801.

H.R. Aliabad, M. Kheirabadi, Physica B: Condensed Matter, 433 (2014) 157-164.

Y. Sharma, P. Srivastava, A. Dashora, L. Vadkhiya, M. Bhayani, R. Jain, A. Jani, B. Ahuja, Solid State Sciences, 14 (2012) 241-249.

Y. Sharma, P. Srivastava, First‐principles Study of Electronic and Optical Properties of Bi2Se3 in its Trigonal and Orthorhombic Phases, in: 5TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES:(NCTP‐09), AIP Publishing, 2010, pp. 183-187.

M. Kim, A. Freeman, C.B. Geller, Physical Review B, 72 (2005) 035205.

A. Wolos, S. Szyszko, A. Drabinska, M. Kaminska, S. Strzelecka, A. Hruban, A. Materna, M. Piersa, Physical review letters, 109 (2012) 247604.

R. Caracas, X. Gonze, Physics and chemistry of minerals, 32 (2005) 295-300.

D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, J. Osterwalder, L. Patthey, A. Fedorov, H. Lin, Physical review letters, 103 (2009) 146401.

T.P. Debies, J.W. Rabalais, Chemical Physics, 20 (1977) 277-283.

Downloads

Published

09-01-2017