A review of leakage current mechanism in nitride based light emitting diode
DOI:
https://doi.org/10.11113/mjfas.v12n2.412Keywords:
Reverse leakage current, Forward leakage current, Poole-Frenkel, Variable Range Hopping, Tunneling.Abstract
We review the dominant mechanism and characteristics of it which gave rise to the existence of forward and reverse leakage current in nitride based light emitting diode (LED). LED is one of the promising device to be used as a lighting source because it does not contain mercury unlike fluorescent lamps. However, the existence of leakage current can affect the reliability and efficiency of LED. Hence, its importance to understand the mechanism that responsible for its existence. The occurrence of leakage current is divided into three main parameters: 1) low bias; 2) medium or high bias; 3) temperature dependence. In low reverse bias, Poole-Frenkel is the dominant mechanism while tunneling is the dominant mechanism in high bias region. Furthermore, in forward bias, defect assisted tunneling is most likely the dominant mechanism. In low forward bias, electrons are the dominant carriers in defect assisted tunneling while in medium forward bias, holes are the dominant carriers. Moreover, Variable Range Hopping (VRH) is reported to be dominant when the temperature of conduction is below 200K.
References
S.-K. Jeon, J.-G. Lee, E.-H. Park. Appl Phys Lett 94 (2009) 131106-1-131106-2.
Meneghini, M., Tazzoli, A., Mura, G., Meneghesso, G., & Zanoni, E. IEEE T Electron Dev 108-119 (2010) 57.
Meneghini, M., Trivellin, N., Butendeich, R., Zehnder, U., Hahn, B., Meneghesso, G., & Zanoni, E. Phys Status Solidi C 7 (2010) 2208-2210.
Han, Dong-Pyo, Chan-Hyoung Oh, Dong-Guang Zheng, Hyunsung Kim, Jong-In Shim, Kyu-Sang Kim, and Dong-Soo Shin. Jpn J Appl Phys 54 (2014) 02BA01.
Jung, Eunjin, and Hyunsoo Kim. Phys Status Solidi A 8 (2014) 1764-1768.
Liu, J., H. Wong, S. L. Siu, C. W. Kok, and V. Filip. Microelectron Reliab 52 (2011) 1636-1639.
Cao, X. A., P. M. Sandvik, S. F. LeBoeuf, and S. D. Arthur. Microelectron Reliab 43 (2003) 1987-1991.
Yang, Shih-Chun, Pang Lin, Chien-Ping Wang, Sheng Bang Huang, Chiu-Ling Chen, Pei-Fang Chiang, An-Tse Lee, and Mu-Tao Chu. Microelectron Reliab 43 (2010) 959-964.
Han, Dong-Pyo, Chan-Hyoung Oh, Hyunsung Kim, Jong-In Shim, Kyu-Sang Kim, and Dong-Soo Shin. IEEE T Electron Dev 62 (2015) 587-92.
Kim, Jaekyun, Youngjo Tak, Hyun-Gi Hong, Moonseung Yang, Suhee Chae, Junghoon Park, Youngsoo Park, and U-In Chung. IEEE T Electron Dev 33 (2012) 1741-743.
Kim, Kyu-Sang, Jin-Ha Kim, and S. N. Cho. IEEE Photonic Tech L 23 (2011) 483-485.
Ganichev, S. D., E. Ziemann, W. Prettl, I. N. Yassievich, A. A. Istratov, and E. R. Weber. Phys Rev B 61 (1999) 10361-365.
Cao, X. A., E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker. IEEE T Electron Dev 22 (2002) 535-537.
Shan, Qifeng, David S. Meyaard, Qi Dai, Jaehee Cho, E. Fred Schubert, Joong Kon Son, and Cheolsoo Sone. Appl Phys Lett 99 (2011) 253806.
Miller, E. J., E. T. Yu, P. Waltereit, and J. S. Speck. Appl Phys Lett 84 (2003) 535-537.
Kim, Jaekyun, Youngjo Tak, Suhee Chae, and Youngsoo Park. IEEE T Electron Dev 34 (2013) 1409-1411.
Kim, Tae-Soo, Byung-Jun Ahn, Yanqun Dong, Ki-Nam Park, Jin-Gyu Lee, Youngboo Moon, Hwan-Kuk Yuh, Sung-Chul Choi, Soon-Ku Hong, and Jung-Hoon Song. Appl Phys Lett 7 (2012) 071910-1-071910-4.
J. Kim, Y. Tak, S. Chae, and Y. Park. J Appl Phys 114 (2013) 013101.
D. Yan, H. Lu, D. Chen, R. Zhang, and Y. Zheng. 96 Appl Phys Lett 96 (2010) 083504.
Han, D.-P., Zheng, D.-G., Oh, C.-H., Kim, H., Shim, J.-I., Shin, D.-S., & Kim, K.-S. Appl Phys Lett 104 (2014) 151108.
Reynolds, C. L., & Patel, A. Appl Phys Lett 103 (2008) 086102.
Auf der Maur, M., Galler, B., Pietzonka, I., Strassburg, M., Lugauer, H., & Di Carlo, A. Appl Phys Lett 105 (2014) 133504.
Wooi, C. L., Abdul-Malek, Z., & Mashak, S. V. Jurnal Teknologi 64:4 (2013) 157-161.