Vanadium oxides doped porous titania photocatalysts for phenol photodegradation
DOI:
https://doi.org/10.11113/mjfas.v12n1.407Keywords:
Vanadium oxides, TiO2, Photocatalyst, PorousAbstract
Vanadium oxides (1 - 5 wt%) doped porous TiO2 using tetrabutyltitanate and cetyltrimethyl ammonium bromide as Ti precursor and template, respectively was successfully synthesized via sol-gel method. All the samples crystallined in anatase phase as indicated by X-ray diffraction analysis. The results of diffused reflectance UV-visible spectroscopy analysis showed that the band gap energy of TiO2 reduced from 3.02 to 2.72 eV after introduction of 5 wt% V. The nitrogen adsorption-desorption analysis revealed that the surface area of samples increased with the amount of V dopant. These materials contained of disorder mesopores with particle size ranged 5 – 56 nm. Amongst, sample 4V-TBT-p-TiO2 recorded the highest percentage of phenol degradation (62.2%) under visible light irradiation
References
Y.K. Ooi, L. Yuliati, S.L. Lee, Jurnal Teknologi. 69:5 (2014) 81-86
O. B. Ayodele, J. K. Lim, B. H. Hameed, Chem. Eng. J. 197 (2012) 181–192.
J. Matos, J. Laine, Herrmann, J. Appl. Catal. B: Environmental. 18 (1998) 281-291.
Y.K. Ooi, L. Yuliati, S.L. Lee, Adv. Mater. Res. 1109 (2015) 424-428
R. L. Autenrieth, J. S. Bonner, A. Akgerman, E. M. McCreary, J. Hazardous Materials. 28 (1991) 29–53.
C. Hu, Y. Z. Wang, H. X. Tang, Chemosphere. 41 (2000) 1205–1209.
M. Ziegmann, F. H. Frimmel, Water Sci Technol. 61 (2010) 273–281.
N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Arab. J. Chem. 3 (2010) 279-283.
Pei Wen Koh, Leny Yuliati, Hendrik O. Lintang, Siew Ling Lee, Aust J. Chem. 68 (2015) 1129-1135
J. Choi, H. Park, M. R. Hoffmann, J. Phys. Chem. C. 114 (2010) 783-792.
P. Chowdhury, J. Moreira, H. Gomaa, A. K. Ray, Ind. Eng. Chem. Res. 51 (2012) 4523–4532.
A. H. Zyoud, N. Zaatar, I. Saadeddin, C. Ali, D. Park, G. Campet,H. S. Hilal, J. Hazard. Mater. 173 (2010) 318–325.
X. D. Wang, R. A. Caruso, J. Mater. Chem. 21 (2011) 20-28.
H. Hamdan, M. N. M. Muhid, S. L. Lee, Y. Y. Tan, Int. J. Chem. React. Eng. 7 (2009) Article 54.
X. L. Liang, S. Y. Zhu, Y. H. Zhong, J. X. Zhu, P. Yuan, H. P. He, J. Zhang. Appl. Catal. B: Environmental. 97 (2010) 151-159.
E. Astorino, J. B. Peri, R. J. Willey, G. J. Busca, Catal. 157 (1995) 482- 500.
C. S. Jeffrey Wu, C. H. Chen, J. Photoch. Photobio. A: Chemistry. 163 (2004) 509–515.
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science. 293 (2001) 269-271.
K. Bhattacharyya, S. Varma, A. K. Tripathi, S. R. Bharadwaj, A. K. Tyagi, J. Phys. Chem. C112 (48) (2008) 19102-19112.
K. Nagaveni, M. S. Hegde, G. Madras. J. Phys. Chem. B. 108 (52) (2004), 20204–20212.
A. L. Manoj, V. Shaji, S. N. Santhosh, Catal.2 (2012) 572-601.
S. Katalin, Mater.3 (2010) 704-740.
T. B. Nguyen, M. J. Hwang, K. S. Ryu, Appl. Surf. Sci. 258 (2012) 7299-7305.
M. D. Donohue, G. L. Aranovich, Fluid Phase Equilibr. 158–160 (1999) 557–563.
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57(4) (1985) 603-619.
K. Bhattacharyya, S. Varma, A. K. Tripathi, S. R. Bharadwaj, A. K. Tyagi, J. Phys. Chem. C112 (48) (2008) 19102-19112.
W. C. Lin, Y. J. Lin, Environ. Eng. Sci. 29 (2012) 447-452.
F. B. Li, X. Z. Li, Chemosphere. 48 (2002) 1103.