The synthesis of cuprous oxide nanowires in the presence of oxygen using a hot tube thermal evaporation method
DOI:
https://doi.org/10.11113/mjfas.v11n4.398Keywords:
Hot tube vacuum thermal evaporation, Cuprous oxide nanowires, Copper foils, Thermal Oxidation, Growth time,Abstract
Cuprous oxide nanowires have been synthesized by heating copper foil in the presence of oxygen rich environment using a hot tube vacuum thermal evaporation method. The effect of growth parameters such as growth time, temperature and oxidative environment on the morphology of the nanowires is investigated. The growth of cuprous oxide nanowires from copper foils thermally oxidized in the presence of oxygen rich at temperatures between 300 and 500 0C. The nanowires were formed within the temperature range of 400 – 500 0C with diameters and length between 25 - 100 nm and length 1 - 4 µm, respectively. This gave an estimate of aspect ratio around 40. Observation from FESEM results revealed the optimal growth of cuprous oxide nanowires which occurred at oxidation times for 1h, 1/2h and 25 minutes and flow rates of oxygen at 0.09 psi, 0.12 psi and 0.08 psi. The atom% of copper and oxygen were measured using EDX and their existence were later confirmed by XRD, essentially indicated by 40% an 60% of copper and oxygen contents, respectively.
References
J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes,
J. Westerink,G.A. Sawatzky, M.T. Czyzyk, Phys. Rev.
B 38 (1988) 11322.
L. C. Olsen, R. C. Bohara, and M.W.Urie,
Applied Physics Letters, 34 (1) (1979), 47–49.
K. Han, M. Tao, Sol. Energy Mater. Sol. Cells 93
(2009) 153.
C.A.N. Fernando, S.K. Wetthasinghe, Sol. Energy
Mater. Sol. Cells 63 (2000) 299.
G Filipiˇc and U Cvelbar, Nanotechnology 23
(2012) 194001.
A. Paracchino, J. Cornelius Brauer, J.-E. Moser,
E. Thimsen,and M. Graetzel, The Journal of
Physical Chemistry C, 116 (13) (2012) 7341–7350.
Y. S. Kim et al.,Sensor Actuat. B-Chem., 135 (2008) 298.
T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H.
Hsieh, and I.C. Chen, Scripta Materialia, 57 (1) (2007)
–56.
K. P. Musselman, A. Marin, L. Schmidt-Mende, and
J. L.MacManus-Driscoll, Advanced Functional
Materials, 22 (10) (2012) 2202–220
Jianbo Liang, Naoki Kishi, Tetsuo Soga, and
Takashi, Journal of Nanomaterials, (2011) 268508.
F. Lanza, R. Feduzi, and J. Fuger, Journal of
Materials Research, 5 (8) (1990) 1739– 1744.
D. Chen, G. Shen, K. Tang, and Y. Qian, Journal
of Crystal Growth, 254 (1-2) (2003) 225–228.
C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih,
Applied Physics Letter, 82 (19) (2003) 3316–3318.
J. Liang, N. Kishi, T. Soga, and T. Jimbo,
Applied Surface Science, 257 (1) (2010) 62–66.
K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and
J.-Y. Chane-Ching, Nanotechnology, 18 (27)
(2007) 275607.
R. C. Wang and C. H. Li, Crystal Growth and Design,
(5) (2009) 2229–2234.
K. Zhang, Y. Yang, E. Y.B. Pun, and R.Shen
Nanotechnology, 21 (23) (2010) 7.
J. Chen, B. J. Hansen, and G. Lu, Journal of
Nanomaterials, 1 (2008) 830474.
A. M.B. Gon¸ alves, L. C. Campos, A. S. Ferlauto,
and R. G.Lacerda, Journal of Applied Physics,
(3) (2009) 34303.
X. Jiang, T. Herricks, and Y. Xia,
Nano -Letters, 2 (12) (2002) 1333–1338.
C. H. Xu, C. H. Woo, and S. Q. Shi, Superlattices
and Microstructures, 36 (1–3) (2004) 31–38.
C. Rossi, K. Zhang, D. Esteve, Journal
of Microelectromechanical Systems, 16 (4) (2007)
–931.
A. M. B. Gon¸ alves, L. C. Campos, A. S. Ferlauto,
and R.G. Lacerda, Journal of Applied Physics,
(3) (2009) 034303.
Fa-chun Laia; Suan-zhi Lina; Zhi-gao Chena;
Hai-long Hub; Li-mei Lina, Chin. J. Chem. Phys,
(5) (2013) 585-589
Seung Ki Baek, Ki Ryong Lee, and Hyung Koun
Cho, Journal of Nanomaterials, (2013) 421371.
JianBo Liang , Naoki Kishi , Tetsuo Soga,
Takashi Jimbo, Mohsin Ahmed, Thin Solid Films,
(2012) 2679–2682.
J.T. Chena, F. Zhang a, J. Wanga, G.A.
Zhang a, B.B. Miaoa, X.Y. Fan a, D. Yana, P.X. Yan a,b,
Journal of Alloys and Compounds, 454 (2008) 268–273.
Rediola Memaa, Lu Yuan a, Qingtian Dub, Yiqian
Wangb, Guangwen Zhou, Chemical Physics Letters
(2011) 87–91.