Valency-Based Molecular Descriptor on Structural Property Relationship of Ni Tetrathiafulvalene Tetrathionate

Authors

  • Abdelli Fathi Special Interest Group on Modeling and Data Analytics (SIGMDA), Faculty of Computer Science and Computer, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • Jeyaraj Sahaya Vijay Department of Mathematics, Vellore Institute of Technology, Vellore 632014, India
  • Mohamad Nazri Husin Special Interest Group on Modeling and Data Analytics, Faculty of Computer Science and Mathematical, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • Tony Augustine Viswajyothi College of Engineering and Technology, Vazhakulam-686670 Kerala, India

DOI:

https://doi.org/10.11113/mjfas.v20n6.3831

Keywords:

Ni Tetrathiafulvalene tetrathionate, edge partition, valency-based molecular descriptors, structural-properties, topological indices.

Abstract

Induced by quantitative structural relationships, valency-based topological indices have been investigated for predicting the structural properties of Ni Tetrathiafulvalene tetrathionate (NiTTFtt) like 2D sheet. Through the use of topological indices, the Kubelka-Munk function for bad gap energy, vibrational frequencies of IR spectroscopy, and graph energy of NiTTFtt like 2D sheet are calculated. The structural features studied have applications such as biosensing, drug discovery, chemical graph theory, machine learning, and more. This main study focused on deriving expressions and numerical values of valency-based topological indices for NiTTFtt like 2D sheet. Additionally, we employed technique to calculate the Kubelka-Munk function values linearly increase when obtained directly from numerical values of valency-based topological indices. Finally, for investigating the properties of NiTTFtt like 2D sheet, statistical correlation analysis shows a significant correlation with vibrational frequencies.

References

Plummer, J. (2015). Is metallic glass poised to come of age? Nature Materials, 14(6), 553–555.

Xie, J., Boyn, J. N., Filatov, A. S., McNeece, A. J., Mazziotti, D. A., & Anderson, J. S. (2020). Redox, transmetalation, and stacking properties of tetrathiafulvalene-2, 3, 6, 7-tetrathiolate bridged tin, nickel, and palladium compounds. Chemical Science, 11(4), 1066–1078.

Heeger, A. J. (2001). Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Reviews of Modern Physics, 73(3), 681.

Valade, L., de Caro, D., Faulmann, C., & Jacob, K. (2016). TTF [Ni (dmit) 2] 2: From single crystals to thin layers, nanowires, and nanoparticles. Coordination Chemistry Reviews, 308, 433–444.

Xie, L. S., Skorupskii, G., & Dinca, M. (2020). Electrically conductive metal–organic frameworks. Chemical Reviews, 120(16), 8536–8580.

de Caro, D., Fraxedas, J., Faulmann, C., Malfant, I., Milon, J., Lamère, J. F., Collière, V., & Valade, L. (2004). Metallic thin films of TTF [Ni (dmit) 2] 2 by electrodeposition on (001)-oriented silicon substrates. Advanced Materials, 16(9–10), 835–838.

Anderson, J., et al. (2022). An intrinsically glassy metallic coordination polymer showing thermally and aerobically robust conductivity.

Kobayashi, A., Fujiwara, E., & Kobayashi, H. (2004). Single-component molecular metals with extended-TTF dithiolate ligands. Chemical Reviews, 104(11), 5243–5264.

Kaiser, A. B. (2001). Electronic transport properties of conducting polymers and carbon nanotubes. Reports on Progress in Physics, 64(1), 1.

Liu, Y., Rezaei, M., Farahani, M. R., Husin, M. N., & Imran, M. (2017). The omega polynomial and the Cluj-Ilmenau index of an infinite class of the titania nanotubes TiO_2 (m,n). Journal of Computational and Theoretical Nanoscience, 14(7), 3429–3432. https://doi.org/10.1166/jctn.2017.6646

Modabish, A., Husin, M. N., Alameri, A. Q., Ahmed, H., Alaeiyan, M., Farahani, M. R., & Cancan, M. (2022). Enumeration of spanning trees in a chain of diphenylene graphs. Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 241–25. https://doi.org/10.1080/09720529.2022.2038931

Asif, F., Zahid, Z., Husin, M. N., Cancan, M., Tas, Z., Alaeiyan, M., & Farahani, M. R. (2012). On Sombor indices of line graph of silicate carbide Si_2 C_3-I[p,q]. Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 241–251. https://doi.org/10.1080/09720510.2022.2043621

Saidi, N. H. A. M., Husin, M. N., & Ismail, N. B. (2021, July). On the topological indices of the line graphs of polyphenylene dendrimer. In AIP Conference Proceedings (Vol. 2365, No. 1). AIP Publishing.

Gao, W., Husin, M. N., Farahani, M. R., Imran, M. (2016). On the edges version of atom-bond connectivity and geometric arithmetic indices of nanocones CNC_K [n]. Journal of Computational and Theoretical Nanoscience, 13(10), 6741–6746. https://doi.org/10.1166/JCTN.2016.5622

Husin, M. N., Hasni, R., & Imran, M. (2017). More results on computation of topological indices of certain networks. International Journal of Networking and Virtual Organisations, 17(1), 46–63. https://doi.org/10.1504/IJNVO.2017.083543

Vijay, J. S., Roy, S., Beromeo, B. C., Husin, M. N., Augustine, T., Gobithaasan, R. U., & Easuraja, M. (2023). Topological properties and entropy calculation of aluminophosphates. Mathematics, 11(11), 2443. https://doi.org/10.3390/math11112443

Saleem, H., Husin, M. N., Ali, S., Hameed, M. S., & Ahmad, Z. (2024). Topology of edge contracted Möbius ladder: Indices and dimension. Malaysian Journal of Fundamental and Applied Sciences, 20, 739–758. https://doi.org/10.11113/mjfas.v20n4.3386

Gowtham, K. J., Husin, M. N. (2023). A study of families of bistar and corona product of graph: Reverse topological indices. Malaysia Journal of Mathematical Sciences, 17(4), 575–586. https://doi.org/10.47836/mjms.17.4.04

Gutman, I., & Das, K. C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50(1), 83–92.

Khalifeh, M. H., Yousefi-Azari, H., & Ashrafi, A. R. (2009). The first and second Zagreb indices of some graph operations. Discrete Applied Mathematics, 157(4), 804–811.

Lu, Y., & Zhou, Q. (2022). On hyper-Zagreb index conditions for Hamiltonicity of graphs. Czechoslovak Mathematical Journal, 72(3), 653–662.

Ghorbani, M., & Hosseinzadeh, M. A. (2013). The third version of Zagreb index. Discrete Mathematics, Algorithms and Applications, 5(04), 1350039.

Buyantogtokh, L., Horoldagva, B., & Das, K. C. (2020). On reduced second Zagreb index. Journal of Combinatorial Optimization, 39(3), 776–791.

Hao, J. (2011). Theorems about Zagreb indices and modified Zagreb indices. MATCH Commun. Math. Comput. Chem, 65, 659–670.

Gowtham, K. J., Husin, M. N., & Siddiqui, M. K. (2024). Some new bounds on the modified symmetric division deg index. Malaysian Journal of Mathematical Sciences, 18(1), 39–50. https://doi.org/10.47836/mjms.18.1.03

Ali, A., Furtula, B., Redžepović, I., & Gutman, I. (2022). Atom-bond sum-connectivity index. Journal of Mathematical Chemistry, 60(10), 2081–2093.

Rada, J., Rodríguez, J. M., & Sigarreta, J. M. (2021). General properties on Sombor indices. Discrete Applied Mathematics, 299, 87–97.

Furtula, B., & Gutman, I. (2015). A forgotten topological index. Journal of Mathematical Chemistry, 53(4), 1184–1190.

Shirdel, G. H., Rezapour, H., & Sayadi, A. M. (2013). The hyper-Zagreb index of graph operations.

Rajasekharaiah, G. V., & Murthy, U. P. (2021). Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications, 8(1), 9–22.

Vukićević, D., & Furtula, B. (2009). Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. Journal of Mathematical Chemistry, 46, 1369–1376.

Shabbir, A., & Nadeem, M. F. (2022). Computational analysis of topological index-based entropies of carbon nanotube Y-junctions. J Stat Phys, 188(31).

Nadeem, M. F., Ishfaq, F., & Shabbir, A. (2024). On resistance distance and Kirchhoff index of cacti networks. J Stat Phys, 191(83).

Myrick, M. L., Simcock, M. N., Baranowski, M., Brooke, H., Morgan, S. L., & McCutcheon, J. N. (2011). The Kubelka-Munk diffuse reflectance formula revisited. Applied Spectroscopy Reviews, 46(2), 140–165.

Wong, M. W. (1996). Vibrational frequency prediction using density functional theory. Chemical Physics Letters, 256(4–5), 391–399.

Gutman, I., Li, X., & Zhang, J. (2009). Graph energy. Analysis of Complex Networks: From Biology to Linguistics, 145–174.

Myrick, M. L., Simcock, M. N., Baranowski, M., Brooke, H., Morgan, S. L., & McCutcheon, J. N. (2011). The Kubelka-Munk diffuse reflectance formula revisited. Applied Spectroscopy Reviews, 46(2), 140–165.

Gonçalves, I. G., Petter, C. O., & Machado, J. L. (2012). Quantification of hematite and goethite concentrations in kaolin using diffuse reflectance spectroscopy: A new approach to Kubelka-Munk theory. Clays and Clay Minerals, 60(5), 473–483.

Landi Jr, S., Segundo, I. R., Freitas, E., Vasilevskiy, M., Carneiro, J., & Tavares, C. J. (2022). Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Communications, 341, 114573.

Downloads

Published

16-12-2024