Nitrogen-doped-TiO2 nanocatalyst for selective photocatalytic CO2 reduction to fuels in a monolith reactor
DOI:
https://doi.org/10.11113/mjfas.v11n3.379Keywords:
photocatalysis, N-doped TiO2, greenhouse gas CO2, H2 reductant, monolith photoreactorAbstract
In this study, photocatalytic CO2 reduction with H2 over nitrogen (N)-doped TiO2 nanocatalyst in a monolith photoreactor has been investigated. The N-doped TiO2 nanocatalyst was synthesized by sol-gel method, dip-coated over the monolith channels, and characterized by XRD, SEM and N2 adsorption-desorption. Highly crystalline and anatase phase TiO2 was produced in the N-doped TiO2 samples with increased surface area and reduced crystallite size. The N-doped TiO2 nanocatalyst demonstrated excellent photoactivity for selective CO2 reduction to CO in a continuous monolith photoreactor. The 3 wt. % N-doped TiO2 was found to be the most optimal, giving maximum CO yield rate of 56.30 µmole g-catal.-1 h-1 with selectivity of 96.3% at CO2/H2 feed ratio 1 and feed flow rate 20 mL/min. The performance of monolithic N-doped TiO2 nanocatalyst for selective and continuous CO production was 4.7 fold higher than un-doped TiO2. The significantly enhanced TiO2 activity was evidently due to hindered charges recombination rate due to N2 doping. The N-doped TO2 gave prolonged stability for continuous CO and CH4 production over the irradiation time.
References
M. Tahir, N.S. Amin, Renewable Sustainable Energy Rev. 25 (2013) 560.
Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu, Z. Zou, Crystal Growth & Design 12 (2012) 1476.
E. Liu, L. Qi, J. Bian, Y. Chen, X. Hu, J. Fan, H. Liu, C. Zhu, Q. Wang, Mater. Res. Bull. 68 (2015) 203.
M. Tahir, N.S. Amin, Appl. Catal., B: Environ. 142-143 (2013) 512.
R. Sasikala, A.R. Shirole, V. Sudarsan, Jagannath, C. Sudakar, R. Naik, R. Rao, S.R. Bharadwaj, Appl. Catal. A: Gen. 377 (2010) 47.
L. Liu, F. Gao, H. Zhao, Y. Li, Appl. Catal., B: Environ. 134-135 (2013) 349.
D. Kong, J.Z.Y. Tan, F. Yang, J. Zeng, X. Zhang, Appl. Surf. Sci. 277 (2013) 105.
B.S. Kwak, K. Vignesh, N.-K. Park, H.-J. Ryu, J.-I. Baek, M. Kang, Fuel 143 (2015) 570.
Z. Xiong, H. Wang, N. Xu, H. Li, B. Fang, Y. Zhao, J. Zhang, C. Zheng, Int. J. Hydrogen Energ. 40 (2015) 10049.
X. Li, Z. Zhuang, W. Li, H. Pan, Appl. Catal. A: Gen. 429-430 (2012) 31.
B. Michalkiewicz, J. Majewska, G. Kądziołka, K. Bubacz, S. Mozia, A.W. Morawski, Journal of CO2 Utilization 5 (2014) 47.
K. Yuan, L. Yang, X. Du, Y. Yang, Energy Convers. Manage. 81 (2014) 98.
M. Tahir, N.S. Amin, Chem. Eng. J. 230 (2013). 314.
P.-Y. Liou, S.-C. Chen, J.C.S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Energy Environ. Sci. 4 (2011) 1487.
M. Tahir, B. Tahir, N.S. Amin, Mater. Res. Bull. 63 (2015) 13.
S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Appl. Catal., B: Environ. 158–159 (2014) 20.
B. Tahir, M. Tahir, N.S. Amin, Energy Convers. Manage. 90 (2015) 272.