Copper modified TiO2 and g-C3N4 catalysts for photoreduction of CO2 to methanol using different reaction mediums
DOI:
https://doi.org/10.11113/mjfas.v11n3.376Keywords:
methanol, titanium dioxide, carbon nitride, copper,Abstract
In this study, Cu/TiO2 and Cu/g-C3N4 catalysts were tested for CO2 reduction to methanol. The catalysts were prepared by the wet impregnation method and, characterized by XRD and FESEM. The product identification and yield were determined using a GC with FID. The CO2 photoreduction process was performed in each of the following reaction mediums: H2O, NaOH, KOH, Na2CO3, K2CO3, NaHCO3 and KHCO3. The efficiency was studied by comparing the methanol yield for each. A slurry type photoreactor with a UV lamp of 365 nm wavelength was used. CO2 photoreduction to methanol using NaOH as the reaction medium registered the highest yield of 431.65 μmole/g-cat•hr. This is due to the higher solubility of CO2 in the alkali as compared to that of the other reaction mediums, the ability of NaOH to serve as a hole scavenger owing to the formation of OH•ions and the higher selectivity of NaOH solution for CO2 photoreduction to methanol. It was obvious the choice of reaction medium affected the photoreduction of CO2 to methanol. The trend of results indicated the use of NaOH as a reaction medium improved the efficiency of the photoreduction process. The findings from this research could promote research in the field of photocatalysis by improving the yield which will encourage the support for methanol economy.
References
Ganesh, I. Materials Science Forum. 2013. Trans Tech Publ.
Tahir, M. and N.S. Amin, Appl. Catal. B: Environ. 142 (2013) 512.
A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garci, Energy Environ. Sci. 5 (2012) 9217.
M. Tahir, N.S. Amin, Renew. Sust. Energ. Rev. 25 (2013) 560.
G.A. Olah, A. Goeppert, G.S. Prakash, Beyond oil and gas: the methanol economy. 2011: John Wiley & Sons.
O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C: Photochem. Rev. 24 (2015) 16.
H.W.N. Slamet, World Appl. Sci. J. 6 (2009) 112.
H.-C. Yang, H.-Y. Lin, Y.-S. Chien, J. C.-S. Wu and H.-H. Wu,
Catal. Lett. 131 (2009) 381.
Q.D. Truong, J.-Y. Liu, C.-C. Chung Y.-C. Ling, Catal. Commun. 19 (2012) 85.
H. W. Nasution, E. Purnama, S. Kosela J. Gunlazuardi, Catal. Commun. 6 (2005) 31331.
P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Ind. Eng. Chem. Res. 45 (2006) 2558.
Indrakanti, V.P., J.D. Kubicki, H.H. Schobert, Energy Environ. Sci. 2 (2009) 745.
S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno. J. Photochem. Photobiol. A: Chem. 115 (1998) 223.
J.C. Wu, H.-M. Lin, C.-L. Lai, Appl. Catal. A: Gen. 296 (2005) 194.
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li. Chem. Rev. (2014) 10043
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 18 (2008) 4893,
L. Yoong, F.K. Chong, B.K. Dutta, Energy 34 (2009) 1652.
Z. Ding, X. Chen, M. Antonietti, X. Wang. ChemSusChem 4 (2011) 274.
J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol. 3 (2013) 1253.
P.-W. Pan, Y.-W. Chen, Catal. Commun. 8 (2007) 1546.
Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang, M. Whangbo, Catal. Commun. 11 (2009) 210.
J.K. Stolaroff, No. LLNL-TR-644894. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013
K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catalysis Today 74 (2002) 241.