Numerical Modelling of SEIR on Two-Dose Vaccination Against the Rubella Virus
DOI:
https://doi.org/10.11113/mjfas.v21n1.3713Keywords:
Childhood disease, mathematical model, reproductive number analysis, Euler; RK4; NSFD.Abstract
In this article, we determine non-linear terms under the modulation of dynamic transmission in childhood diseases analyzed to explore the effect of Rubella virus, along with double-dose vaccination strategy which was suggested by WHO. Firstly, basic properties of model were calculated such as positiveness, boundedness, disease free and endemic points. Model stability was proved at the disease-free and endemic equilibrium points. The Reproductive number was calculated using the next generation matrix method. Furthermore, sensitivity analysis is used to ascertain how parameter changes impact the system's dynamic behavior. We used Euler, Rk-4 and NSFD method. The purpose of the numerical simulations is to demonstrate the importance of the theoretical findings using numerical methods and the viability of the numerical schemes. Convergence and consistency analysis of NSFD scheme were proven. Additionally, we proved that NSFD is more reliable than Euler and RK4 through graphical interpretation. Incorporating this method enhanced the model’s accuracy, stability, and predictions for rubella dynamics.
References
Artiono, R., & Prawoto, B. P. (2021). The dynamics of rubella virus with two-dose vaccination strategy. Commun. Math. Biol. Neurosci., 2021.
Artiono, R., & Prawoto, B. P. (2020). The effects of vaccination to the dynamics of rubella virus with seasonality. Commun. Math. Biol. Neurosci., 2020.
Lambert, N., Strebel, P., Orenstein, W., Icenogle, J., & Poland, G. A. (2015). Rubella. The Lancet, 385(9984), 2297–2307.
Artiono, R., & Prawoto, B. P. (2021). The dynamics of rubella virus with two-dose vaccination strategy. Commun. Math. Biol. Neurosci., 2021.
Vynnycky, E., Adams, E. J., Cutts, F. T., Reef, S. E., Navar, A. M., Simons, E., et al. (2016). Using seroprevalence and immunisation coverage data to estimate the global burden of congenital rubella syndrome, 1996–2010: A systematic review. PloS One, 11(3), e0149160.
Jember, T. H. (2014). Challenges of schistosomiasis prevention and control in Ethiopia: Literature review and current status. J Parasitol Vector Biol, 6(6), 80–86.
Vynnycky, E., Adams, E. J., Cutts, F. T., Reef, S. E., Navar, A. M., Simons, E., & Dabbagh, A. J. (2016). Using seroprevalence and immunisation coverage data to estimate the global burden of congenital rubella syndrome, 1996–2010: A systematic review. PloS One, 11(3), e0149160.
Artiono, R., & Prawoto, B. P. (2021). The dynamics of rubella virus with two-dose vaccination strategy. Commun. Math. Biol. Neurosci., 2021, Article-ID.
Shafayi, A., & Mohammadi, A. (2021). A review on rubella vaccine: Iran (1975–2010). Archives of Razi Institute, 76(2), 167.
LeBaron, C. W., Forghani, B., Matter, L., Reef, S. E., Beck, C., Bi, D., et al. (2009). Persistence of rubella antibodies after 2 doses of measles-mumps-rubella vaccine. The Journal of Infectious Diseases, 200(6), 888–899.
Hamborsky, J., Kroger, A., & Wolfe, C. (Eds.). (2015). Epidemiology and prevention of vaccine-preventable diseases: The Pink Book: Course Textbook. Public Health Foundation.
Gao, Z., Wood, J. G., Burgess, M. A., Menzies, R. I., McIntyre, P. B., & MacIntyre, C. R. (2013). Models of strategies for control of rubella and congenital rubella syndrome: A 40-year experience from Australia. Vaccine, 31(4), 691–697.
Wu, Y., Wood, J., Khandaker, G., Waddington, C., & Snelling, T. (2016). Informing rubella vaccination strategies in East Java, Indonesia through transmission modelling. Vaccine, 34(46), 5636–5642.
Brauer, F. (2005). The Kermack–McKendrick epidemic model revisited. Mathematical Biosciences, 198(2), 119–131.
Zhou, L., Wang, Y., Xiao, Y., & Li, M. Y. (2019). Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Mathematical Biosciences, 308, 27–37.
Sun, C., & Hsieh, Y. H. (2010). Global analysis of an SEIR model with varying population size and vaccination. Applied Mathematical Modelling, 34(10), 2685–2697.
Hethcote, H. W. (1976). Qualitative analyses of communicable disease models. Mathematical Biosciences, 28(3–4), 335–356.
Tamhaji, N. H., & Hamdan, N. I. (2023). The dynamics of tuberculosis through BSEIR model with immigration in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 19(6), 1176–1189.
Erinle-Ibrahim, L. M., Lawal, W. O., Adebimpe, O., & Sontan, G. R. (2021). A susceptible exposed infected recovered susceptible (SEIRS) model for the transmission of tuberculosis. Tanzania Journal of Science, 47(3), 917–927.
Widyaningsih, P., Nugroho, A. A., & Saputro, D. R. S. (2018, September). Susceptible infected recovered model with vaccination, immunity loss, and relapse to study tuberculosis transmission in Indonesia. In AIP Conference Proceedings (Vol. 2014, No. 1). AIP Publishing.
Chantler, J. K., Tingle, A. J., & Petty, R. E. (1985). Persistent rubella virus infection associated with chronic arthritis in children. New England Journal of Medicine, 313(18), 1117–1123.
Patel, M. K., Antoni, S., Danovaro-Holliday, M. C., Desai, S., Gacic-Dobo, M., Nedelec, Y., & Kretsinger, K. (2020). The epidemiology of rubella, 2007–18: An ecological analysis of surveillance data. The Lancet Global Health, 8(11), e1399–e1407.
Alfwzan, W. F., Baleanu, D., Raza, A., Rafiq, M., & Ahmed, N. (2023). Dynamical analysis of a class of SEIR models through delayed strategies. In AIP Advances (Vol. 13, Issue 7). AIP Publishing. https://doi.org/10.1063/5.0159942
Naveed, M., Baleanu, D., Raza, A., Rafiq, M., & Hassan Soori, A. (2022). Treatment of polio delayed epidemic model via computer simulations. In Computers, Materials & Continua (Vol. 70, Issue 2, pp. 3415–3431). Computers, Materials and Continua (Tech Science Press). https://doi.org/10.32604/cmc.2022.020112
Ahmad, W., Butt, A. I. K., Akhtar, N., Rafiq, M., Gohar, M., Idrees, Z., & Ahmad, N. (2024). Developing computationally efficient optimal control strategies to eradicate rubella disease. In Physica Scripta (Vol. 99, Issue 3, p. 035202). IOP Publishing. https://doi.org/10.1088/1402-4896/ad1fc0
Butt, A. I. K., Ahmad, W., Rafiq, M., Ahmad, N., & Imran, M. (2023). Computationally efficient optimal control analysis for the mathematical model of Coronavirus pandemic. In Expert Systems with Applications (Vol. 234, p. 121094). Elsevier BV. https://doi.org/10.1016/j.eswa.2023.121094
Raza, A., Rafiq, M., Ahmed, N., Sajid Iqbal, M., Rezapour, S., & Inc, M. (2024). Computer modeling: A gateway to novel advancements in solving real-life problems. In Biomedical Signal Processing and Control (Vol. 95, p. 106414). Elsevier BV. https://doi.org/10.1016/j.bspc.2024.106414
Raza, A., Awrejcewicz, J., Rafiq, M., & Mohsin, M. (2021). Breakdown of a nonlinear stochastic Nipah virus epidemic model through efficient numerical methods. Entropy, 23(12), 1588. https://doi.org/10.3390/e23121588
Alqarni, M. M., Nasir, A., Alyami, M. A., Raza, A., Awrejcewicz, J., Rafiq, M., Ahmed, N., Sumbal Shaikh, T., & Mahmoud, E. E. (2022). A SEIR epidemic model of whooping cough-like infections and its dynamically consistent approximation. In S. A. Cheong (Ed.), Complexity (Vol. 2022, pp. 1–13). Hindawi Limited. https://doi.org/10.1155/2022/3642444
Zeb, S., Mohd Yatim, S. A., Rafiq, M., Ahmad, W., Kamran, A., & Karim, Md. F. (2024). Treatment and delay control strategy for a non-linear Rift Valley fever epidemic model. In AIP Advances (Vol. 14, Issue 11). AIP Publishing. https://doi.org/10.1063/5.0228513
LeBaron, C. W., Forghani, B., Matter, L., et al. (2009). Persistence of rubella antibodies after 2 doses of measles-mumps-rubella vaccine. J. Infect. Dis., 200, 888–899.
Saleem, S., Rafiq, M., Ahmed, N., et al. (2024). Fractional epidemic model of coronavirus disease with vaccination and crowding effects. Sci Rep, 14, 8157. https://doi.org/10.1038/s41598-024-58192-7
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shah Zeb, Siti Ainor Mohd Yatim, Awais Ahmad, Ayesha Kamran, Muhammad Rafiq

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.