Hydrothermal Liquefaction of Microalgae to Bio-oil Using Zeolite Catalysts

Authors

  • Anita Ramli ᵃHICoE Centre of Biofuel and Biochemical Research, Institute of Sustainable Energy & Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia ᵇDepartment of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Afeefah Fakhruldin Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Adam Azmi Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Nur Akila Syakida Idayu Khairul Anuar Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n5.3681

Keywords:

Zeolite catalysts, hydrothermal liquefaction (HTL), Nannochloropsis oculata, bio-oil.

Abstract

Mesoporous zeolite silica-alumina catalysts were investigated for their impact on the hydrothermal liquefaction (HTL) to convert Nannochloropsis oculata into bio-oil. The commercial catalysts were characterized using characterization instruments which are XRD, SAP, and TPD-NH3 analysis, revealing distinctive structural and physicochemical properties. The catalytic screening was conducted at varied reaction temperatures (160–240 °C), durations (60–120 min), and catalyst loadings (1–5 wt.%). The result revealed that ZSM-5 demonstrates effectiveness as a catalyst for the HTL of Nannochloropsis oculata, yielding high bio-oil production under optimized conditions. Strong acid sites and high surface area density are highlighted as the key factors contributing to the catalyst's enhanced performance in promoting valuable bio-oil components.

References

Sharara, M. A., Clausen, E. C., Carrier, D. J., Bergeron, C., & Ramaswamy, S. (2012). An overview of biorefinery technology. Biorefinery Co-Products, 1–18. https://doi.org/10.1002/9780470976692.ch1

Costa, P. A., Mata, R. M., Pinto, M. F., Paradela, F., & Dutra, F. (2022). Hydrothermal liquefaction of microalgae for the production of biocrude and value-added chemicals. Chemical Engineering Transactions, 94, 865–870. https://doi.org/10.3303/CET2294144

Huo, C., Ouyang, J., & Yang, H. (2014). CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Sci Rep, 4, 3682. https://doi.org/10.1038/srep03682

Wang, W., Xu, Y., Wang, X., Zhang, B., Tian, W., Zhang, J. (2018). Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Bioresour. Technol., 250, 474–480. https://doi.org/10.1016/j.biortech.2017.11.051

Da Silva, V. J., Crispim, A. C., Queiróz, M. B., Menezes, R. R., Laborde, H. M., & Rodrigues, M. G. F. (2010). Structural and morphology characterization of ZSM-5 zeolite by hydrothermal synthesis. Materials Science Forum, 660–661, 543–548. https://doi.org/10.4028/www.scientific.net/msf.660-661.543

Aldeen, O. D. A. S., Mahmoud, M. Z., Majdi, H. S., Mutlak, D. A., Uktamov, K. F., & Kianfar, E. (2022). Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha. Advances in Materials Science and Engineering, 2022, 1–22. https://doi.org/10.1155/2022/6165180

Chang, Y. C., Bai, H., Li, S. N., & Kuo, C. N. (2011). Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument. Sensors, 11(4), 4060–4072. https://doi.org/10.3390/s110404060

Rutkowska, M., Macina, D., Piwowarska, Z., Gajewska, M., Díaz, U., & Chmielarz, L. (2016). Hierarchically structured ZSM-5 obtained by optimized mesotemplate-free method as active catalyst for methanol to DME conversion. Catalysis Science & Technology, 6(13), 4849–4862. https://doi.org/10.1039/c6cy00040a

Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity. Berichte der Bunsengesellschaft für Phys. Chemie, 86(10), 957–957. https://doi.org/10.1002/bbpc.19820861019

Li, X., Rezaei, F., Ludlow, D. K., & Rownaghi, A. A. (2018). Synthesis of SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 core–shell zeolite composites for ethanol dehydration. Industrial & Engineering Chemistry Research, 57(5), 1446–1453. https://doi.org/10.1021/acs.iecr.7b05075

Numpilai, T., Kahadit, S., Witoon, T., Ayodele, B. V., Cheng, C. K., Siri-Nguan, N., Sornchamni, T., Wattanakit, C., Chareonpanich, M., & Limtrakul, J. (2021). CO2 hydrogenation to light olefins over IN2O3/SAPO-34 and Fe-CO/K-Al2O3 composite catalyst. Topics in Catalysis, 64(5–6), 316–327. https://doi.org/10.1007/s11244-021-01412-5

Nugraha, R. E., Prasetyoko, D., Bahruji, H., Suprapto, S., Asikin-Mijan, N., Oetami, T. P., Jalil, A. A., Vo, D. N., & Taufiq-Yap, Y. H. (2021). Lewis’s acid Ni/Al-MCM-41 catalysts for H2-free deoxygenation of Reutealis trisperma oil to biofuels. RSC Adv., 11(36), 21885–21896. https://doi.org/10.1039/d1ra03145g

Kalamaras, C. M., Palomas, D., Bos, A., Horton, A. D., Crimmin, M. R., & Hellgardt, K. (2016). Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: The effect of Si/Al molar ratio. Catalysis Letters, 146(2), 483–492. https://doi.org/10.1007/s10562-015-1664-7

Wang, Q., Zhang, W., Ma, X., Liu, Y., Zhang, L., Zheng, J., Wang, Y., Li, W., Fan, B., & Li, R. (2023). A highly efficient SAPO-34 catalyst for improving light olefins in methanol conversion: Insight into the role of hierarchical porosities and tailoring acid properties based on in situ NH3-poisoning. Fuel, 331, 125935. https://doi.org/10.1016/j.fuel.2022.125935

Venezia, A. M., Murania, R., La Parola, V., Pawelec, B., & Fierro, J. (2010). Post-synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts. Applied Catalysis A: General, 383(1–2), 211–216. https://doi.org/10.1016/j.apcata.2010.06.001

Yuan, E., Han, W., Zhang, G., Zhao, K., Mo, Z., Lü, G., & Tang, Z. (2016). Structural and textural characteristics of Zn-containing ZSM-5 zeolites and application for the selective catalytic reduction of NOx with NH3 at high temperatures. Catalysis Surveys from Asia, 20(1), 41–52. https://doi.org/10.1007/s10563-015-9205-3

Ma, T., Imai, H., Yamawaki, M., Terasaka, K., & Li, X. (2014). Selective synthesis of gasoline-ranged hydrocarbons from syngas over hybrid catalyst consisting of metal-loaded ZSM-5 coupled with copper-zinc oxide. Catalysts, 4(2), 116–128. https://doi.org/10.3390/catal4020116

Wu, Z., Ran, R., Ma, Y., Wu, X., Si, Z., & Weng, D. (2018). Quantitative control and identification of copper species in Cu–SAPO-34: A combined UV–Vis spectroscopic and H2-TPR analysis. Research on Chemical Intermediates, 45(3), 1309–1325. https://doi.org/10.1007/s11164-018-3680-x

Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Industrial & Engineering Chemistry Research, 50(1), 52–61. https://doi.org/10.1021/ie100758s

Ma, C., Geng, J., Zhang, D., & Ning, X. (2020). Hydrothermal liquefaction of macroalgae: Influence of zeolites-based catalyst on products. Journal of the Energy Institute, 93(2), 581–590. https://doi.org/10.1016/j.joei.2019.06.007

Wang, H., Tian, W., Zeng, F., Du, H., Zhang, J., & Li, X. (2020). Catalytic hydrothermal liquefaction of spirulina over bifunctional catalyst to produce high-quality biofuel. Fuel, 282, 118807. https://doi.org/10.1016/j.fuel.2020.118807

Zhang, B., Lin, Q., Zhang, Q., Wu, K., Pu, W., Yang, M., & Wu, Y. (2017). Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil. RSC Advances, 7(15), 8944–8951. https://doi.org/10.1039/c6ra28747f

Kotelev, M., Tiunov, I., Ivanov, E., & Namsaraev, Z. (2018). Hydrothermal liquefaction-isomerization of biomass for biofuel production. IOP Conf. Ser.: Earth Environ. Sci., 337, 012011. https://doi.org/10.1088/1755-1315/337/1/012011

Wang, A., Chen, Y., Walter, E. D., Washton, N. M., Mei, D., Varga, T., Wang, Y., Szanyi, J., Wang, Y., Peden, C. H. F., & Gao, F. (2019). Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nat Commun, 10, 1137. https://doi.org/10.1038/s41467-019-09021-3

Woo, J., Leistner, K., Bernin, D., Ahari, H., Shost, M., Zammit, M., & Olsson, L. (2018). Effect of various structure directing agents (SDAs) on low-temperature deactivation of Cu/SAPO-34 during NH3-SCR reaction. Catalysis Science & Technology, 8(12), 3090–3106. https://doi.org/10.1039/c8cy00147b

Xu, J., Dong, X., & Wang, Y. (2020). Hydrothermal liquefaction of macroalgae over various solids, basic or acidic oxides and metal salt catalyst: Products distribution and characterization. Industrial Crops and Products, 151, 112458. https://doi.org/10.1016/j.indcrop.2020.112458

Li, Y., Zhu, C., Jiang, J., Yang, Z., Feng, W., Li, L., Guo, Y., & Chen, G. (2020). Hydrothermal liquefaction of macroalgae with in-situ-hydrogen donor formic acid: Effects of process parameters on products yield and characterizations. Industrial Crops and Products, 153, 112513. https://doi.org/10.1016/j.indcrop.2020.112513

Reddy, H. K., Muppaneni, T., Rastegary, J., Shirazi, S. A., Ghassemi, A., & Deng, S. (2013). ASI: Hydrothermal extraction and characterization of bio-crude oils from wet Chlorella sorokiniana and Dunaliella tertiolecta. Environmental Progress & Sustainable Energy, 32(4), 910–915. https://doi.org/10.1002/ep.11862

Carpio, R. B., Zhang, Y., Kuo, C. T., Chen, W., Schideman, L., & De Leon, R. (2021). Effects of reaction temperature and reaction time on the hydrothermal liquefaction of demineralized wastewater algal biomass. Bioresource Technology Reports, 14, 100679. https://doi.org/10.1016/j.biteb.2021.100679

Li, D., Chen, L., Xu, D., Zhang, X., Ye, N., Chen, F., & Chen, S. (2012). Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresource Technology, 104, 737–742. https://doi.org/10.1016/j.biortech.2011.11.011

Hong, C., Wang, Z., Si, Y., Xing, Y., Yang, J., Li, F., Wang, Y., Hu, J., Li, Z., & Li, Y. (2021). Catalytic hydrothermal liquefaction of penicillin residue for the production of bio-oil over different homogeneous/heterogeneous catalysts. Catalysts, 11(7), 849. https://doi.org/10.3390/catal11070849

Yeh, T. M., Dickinson, J. G., Franck, A., Linic, S., Thompson, L. T., & Savage, P. E. (2012). Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 88(1), 13–24. https://doi.org/10.1002/jctb.3933

Saber, M. J., Golzary, A., Hosseinpour, M., Takahashi, F., & Yoshikawa, K. (2016). Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Applied Energy, 183, 566–576. https://doi.org/10.1016/j.apenergy.2016.09.017

Downloads

Published

15-10-2024