Kinetic Degradation and Colour Stability in an Aqueous System of Spray-Dried Metal-Stabilised Amaranth Powder Encapsulated in Different Wall Materials

Authors

  • Siti Faridah Mohd Amin ᵃFaculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia ᵇFood Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Kharidah Muhammad Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Yus Aniza Yusof Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Ahmad Hazim Abdul Aziz Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Nor Qhairul Izreen Mohd Noor Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v21n1.3664

Keywords:

Amaranth powder, degradation kinetics, chlorophyll retention, storage stability.

Abstract

The present study aims to determine the kinetics of chlorophyll degradation and green colour stability of encapsulated copper (Cu)- and zinc (Zn)-amaranth powders stored under accelerated (45°C) and room (25°C) temperature for 16 weeks and six months, respectively. The powders were spray-dried using 10% maltodextrin (DE 10), resistant maltodextrin, N-Octenyl Succinate Anhydride starches (HI-CAP® 100 and CAPSUL®), and gum Arabic (GA). The effects of pH (4 to 8, in the absence of light at 25°C for 24 hours), temperature (40 to 100°C for 90 mins), and light exposure (fluorescent light at 25°C for five days) on the chlorophyll retention and colour stability of the powders in an aqueous system were also explored. The chlorophyll degradation kinetics of the powders followed a first-order reaction model. The Zn-amaranth powder encapsulated with CAPSUL® exhibited the lowest rate constant (k = 2.7 × 10−3 weeks−1) and the highest half-life (t1/2 = 256.72 weeks) under storage at 25°C. The Cu-amaranth powder encapsulated with GA demonstrated the highest greenness value during storage at both 25°C (six months) and 45°C (16 weeks). In the aqueous system, the Cu-amaranth powder encapsulated with GA possessed the highest chlorophyll retention (> 90%) in acidic conditions. Meanwhile, maltodextrin-encapsulated Cu-amaranth powder exhibited better chlorophyll retention and colour stability under light exposure and high temperatures.

References

FAMA. (2020). Laporan Harga Purata Terkini Peringkat Runcit Komoditi Harian. Retrieved from http://www.fama.gov.my/web/pub/harga-pasaran-terkini

Topwal, M. (2019). A review on amaranth: Nutraceutical and virtual plant for providing food security and nutrients. Acta Scientific Agriculture, 3(1), 09–15.

Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12, 381–412.

Repo-Carrasco-Valencia, R., Hellstrom, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128–133.

Vivek, P., Prabhakaran, S., & Shankar, S. R. (2013). Assessment of nutritional value in selected edible greens based on the chlorophyll content in leaves. Research in Plant Biology, 3(5), 45–49.

Isabelle, M., Lee, B. L., Lim, M. T., Koh, W. P., Huang, D., & Ong, C. N. (2010). Antioxidant activity and profiles of common fruits in Singapore. Food Chemistry, 123, 77–84.

Mavhungu, N. (2011). Antioxidant properties and cellular protective effects of selected African green leafy vegetables (PhD thesis). University of Pretoria, South Africa.

Mnkeni, A., Masika, P., & Maphaha, M. (2007). Nutritional quality of vegetable and seed from different accessions of Amaranthus in South Africa. Water SA, 33(3), 377–380.

Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 51(9), 1654–1673.

Lanfer-Marquez, U. M., & Sinnecker, P. (2007). Chlorophylls: Properties, biosynthesis, degradation and functions. In C. Socaciu (Ed.), Food colorants: Chemical and functional properties (pp. 25–45). CRC Press.

Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of food powders (pp. 532–552). Woodhead Publishing.

Syamila, M., Gedi, M. A., Briars, R., Ayed, C., & Gray, D. A. (2019). Effect of temperature, oxygen and light on the degradation of β-carotene, lutein and α-tocopherol in spray-dried spinach juice powder during storage. Food Chemistry, 284, 188–197.

Kandansamy, K., & Somasundaram, P. D. (2012). Microencapsulation of colors by spray drying – a review. International Journal of Food Engineering. https://doi.org/10.1515/1556-3758.2647

Idham, Z., Muhamad, I. I., & Sarmidi, M. R. (2012). Degradation kinetics and color stability of spray‐dried encapsulated anthocyanins from Hibiscus sabdariffa L. Journal of Food Process Engineering, 35(4), 522–542.

Hsiao, C. J., Lin, J. F., Wen, H. Y., Lin, Y. M., Yang, C. H., Huang, K. S., & Shaw, J. F. (2020). Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chemistry, 306, 125300.

Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31(12), 1362–1373.

Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra-Leos, M. Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. E., & Saurel, R. M. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462–470.

Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.

Xiao, Z., Xia, J., Zhao, Q., Niu, Y., & Zhao, D. (2022). Maltodextrin as wall material for microcapsules: A review. Carbohydrate Polymers, 298, 120113.

Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161.

Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lebensmittel-Wissenschaft + Technologie, 153, 112527. https://doi.org/10.1016/j.lwt.2021.112527

Ngo, T., & Zhao, Y. (2007). Formation of zinc‐chlorophyll‐derivative complexes in thermally processed green pears (Pyrus communis L.). Journal of Food Science, 72(7), C397–C404.

Guzmán, G. R., Dorantes, A. L., Hernández, U. H., Hernández, S. H., Ortiz, A., & Mora, E. R. (2002). Effect of zinc and copper chloride on the color of avocado puree heated with microwaves. Innovative Food Science & Emerging Technologies, 3(1), 47–53.

Porrarud, S., & Pranee, A. (2010). Microencapsulation of Zn-chlorophyll pigment from Pandan leaf by spray drying and its characteristic. International Food Research Journal, 17(4), 1031–1042.

Chaiwanichsiri, S., Dharmsuriya, N., Sonthornvit, N., & Janjarasskul, T. (2000). Process improvement to preserve the color of instant pennywort Centella asiatica (Linn.) Urban. Journal of Scientific Research, Chulalongkorn University, 25(2), 233–243.

Cao, H. K. N., & Dong, T. A. D. (2023). Study on the effect of metal salts on chlorophyll pigment extraction from fresh Sauropus androgynus leaves. Journal of Agriculture and Food Research, 14, 100699.

Zheng, Y., Shi, J., Pan, Z., Cheng, Y., Zhang, Y., & Li, N. (2014). Effect of heat treatment, pH, sugar concentration, and metal ion addition on green color retention in homogenised puree of Thompson seedless grape. LWT - Food Science and Technology, 55(2), 595–603.

Selan, O. T., Hawu, H. N., Poy, L. D., Cunha, T. D., & Darmakusuma, D. (2021). The substitution of Mg2+ with Mn2+/4+ metal ions in chlorophyll structure isolated from Gliricidia sepium leaves. Journal of Physics: Conference Series, 2017(1), 012002.

Code of Federal Regulations. (2020). Title 21 - Food and Drugs. Subchapter B: Food for Human Consumption. Part 184 and 182: Direct food substances affirmed as Generally Recognised As Safe. Section 184.1261 - Copper sulfate and Section 182.8985- Zinc chloride. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1261

Ganje, M., Jafari, S. M., Dusti, A., Dehnad, D., Amanjani, M., & Ghanbari, V. (2016). Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing, 97, 12–19.

Zhang, X., Yi, W., Liu, G., Kang, N., Ma, L., & Yang, G. (2021). Colour and chlorophyll level modelling in vacuum-precooled green beans during storage. Journal of Food Engineering, 301.

Weemaes, C. A., Ooms, V., Loey, A. M. V., & Hendrickx, M. E. (1999). Kinetics of chlorophyll degradation and colour loss in heated broccoli juice. Journal of Agricultural and Food Chemistry, 47, 2404–2409.

Gaur, S., Shivhare, U. S., Sarkar, B. C., & Ahmed, J. (2007). Thermal chlorophyll degradation kinetics of mint leaves puree. International Journal of Food Properties, 10(4), 853–865.

Ryan-Stoneham, T.A., & Tong, C.H. (2000). Degradation kinetics of chlorophyll in peas as a function of pH. Journal of Food Science, 65, 1296–1302.

Rudra, S. G., Sarkar, B., & Shivhare, U. (2008). Thermal degradation kinetics of chlorophyll in pureed coriander leaves. Food and Bioprocess Technology, 1(1), 91–99.

Lau, M. H., Tang, J., & Swanson, B. G. (2000). Kinetics of textural and color changes in green asparagus during thermal treatments. Journal of Food Engineering, 45(4), 231–236.

Kang, Y.-R., Lee, Y.-K., Kim, Y. J., & Chang, Y. H. (2019). Characterisation and storage stability of chlorophylls microencapsulated in different combinations of gum Arabic and maltodextrin. Food Chemistry, 272, 337–346.

Comunian, T. A., Monterrey‐Quintero, E. S., Thomazini, M., Balieiro, J. C., Piccone, P., Pittia, P., & Favaro‐Trindade, C. S. (2011). Assessment of production efficiency, physicochemical properties and storage stability of spray‐dried chlorophyllide, a natural food colourant, using gum Arabic, maltodextrin and soy protein isolate‐based carrier systems. International Journal of Food Science & Technology, 46(6), 1259–1265.

Mohd Amin, S.F., Karim, R., Yusof, Y.A., & Muhammad, K. (2023). Effects of metal concentration, pH, and temperature on the chlorophyll derivative content, green colour, and antioxidant activity of amaranth (Amaranthus viridis) purees. Applied Sciences, 13(3), 1344. https://doi.org/10.3390/app13031344

Amin, S.F.M., Karim, R., Yusof, Y. A., & Muhammad, K. (2021). Effects of enzymatic liquefaction, drying techniques, and wall materials on the physicochemical properties, bioactivities, and morphologies of zinc-amaranth (Amaranthus viridis L.) powders. International Journal of Food Science, Oct 21.

Dere, S., Günes, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22, 13–17.

Costache, M. A., Campeanu, G., & Neata, G. (2012). Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Romanian Biotechnological Letters, 17(5), 7703–7708.

Ee, S., Jamilah, B., Muhammad, K., Hashim, D., & Adzahan, N. (2014). Physico-chemical properties of spray-dried red pitaya (Hylocereus polyrhizus) peel powder during storage. International Food Research Journal, 21(1)

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914.

Larrauri García, J.A., & Saura Calixto, F. (2000). Evaluation of CIE-lab colour parameters during the clarification of a sugar syrup from Mesquite pods (Prosopis Pallida L.). International Journal of Food Science & Technology, 35, 385–389.

Selim, K. A. K., Abdel-Bary, M. S., & Abdel-Azeim, N. A. (2008). Extraction, encapsulation and utilisation of red pigments from roselle (Hibiscus sabdariffa L.) as natural food colourants. Alexandria Journal of Food Science and Technology, Special Volume Conference, 7–20.

Cai, Y., Sun, M., Wu, H., Huang, R., & Corke, H. (1998). Characterisation and quantification of betacyanin pigments from diverse amaranthus species. Journal of Agricultural and Food Chemistry, 46(6), 2063–2070.

Shaaruddin, S., Ghazali, H. M., Hamed Mirhosseini, S., & Muhammad, K. (2017). Stability of betanin in pitaya powder and confection as affected by resistant maltodextrin. LWT - Food Science and Technology, 84, 129–134.

Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.

Ramakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414.

Marzena Anna, P., Arkadiusz, S., Edyta, S., Małgorzata, G., & Elżbieta, D. (2018). α- and β-Carotene stability during storage of microspheres obtained from spray-dried microencapsulation technology. Polish Journal of Food and Nutrition Sciences, 68(1), 45–55.

Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609–615.

Vongsawasdi, P., Nopharatana, M., Sasaeng, K., Tantek, P., & Wongphaisitpisan, S. (2010). Kinetics of chlorophyll degradation in pandanus juice during pasteurisation. Asian Journal of Food and Agro-Industry, 3(1), 44–51.

Bilek, S. E., & Özkan, G. (2018). Encapsulation of zinc-chlorophyll derivatives in whey protein matrix by emulsion/cold-set gelation. The Journal of Food, 43(1), 174–183.

Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885–894.

Schwartz, J., & Lorenzo, V. (1990). Chlorophyll in food. Food Science and Nutrition, 29(1), 1–12.

Bustos-Garza, C., Yáñez-Fernández, J., & Barragán-Huerta, B. E. (2013). Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Research International, 54(1), 641–649.

Gunawan, M. I., & Barringer, S. A. (2000). Green colour degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. Journal of Food Processing and Preservation, 24, 253–263.

Reshmi, S., Aravindhan, K., & Devi, P. S. (2012). The effect of light, temperature, pH on stability of betacyanin pigments in basella alba fruit. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 107–110.

Cai, Y., Sun, M., Schliemann, W., & Corke, H. (2001). Chemical stability and colourant properties of betaxanthin pigments from Celosia argentea. Journal of Agricultural and Food Chemistry, 49(9), 4429–4435.

Akbas, E., Kilercioglu, M., Onder, O. N., Koker, A., Soyler, B., & Oztop, M. H. (2017). Wheatgrass juice to wheatgrass powder: Encapsulation, physical and chemical characterisation. Journal of Functional Foods, 28, 19–27.

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835.

Min, D. B., & Boff, J. M. (2002). Chemistry and reaction of singlet oxygen in foods. Comprehensive Reviews in Food Science and Food Safety, 1(2), 58–72.

Boris, D. B., Svetlana, V. R., Andrey, P. M., & Mikhail, B. B. (2004). Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes. Russian Chemical Reviews, 73(2), 185.

Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules, 28(14), 5344.

Lee, E., Ahn, H., & Choe, E. (2014). Effects of light and lipids on chlorophyll degradation. Food Science Biotechnology, 23, 1061–1065.

Acosta Murillo, R. (2021). Analysis of light exposure time and its effect on photosynthetic pigment chlorophyll α and β degradation. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(6), 17.

Petrović, S., Zvezdanović, J., & Marković, D. (2017). Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiation Physics and Chemistry, 141, 8–16.

Downloads

Published

21-02-2025