Destruction Of C7, C9 Perfluorocarboxylic Acids By The Strain Ensifer Adhaerens M1
DOI:
https://doi.org/10.11113/mjfas.v20n6.3655Keywords:
Perfluorocarboxylic acid, Ensifer, biodegradation, transformation.Abstract
The aim of the study was to determine the resistance to high concentrations of fluoride ions in the environment of the strain Ensifer adhaerens M1 isolated from soil at a fire extinguishing agent storage and testing site, to determine the growth kinetics and destruction of C7, C9 perfluorocarboxylic acids, perfluoroheptanoic acid and perfluorononanoic acid, respectively, as the sole sources of carbon and energy. The degradation products of perfluorinated carboxylic acids were identified using LCMS-IT-TOF. It was found that the degradation process occurs in multiple stages leading to the formation of perfluorohexanoic acid and accompanied by the release of fluoride ions. Strain Ensifer adhaerens M1 is resistant to F- up to a concentration of 150 mg/L in the environment. Within 14 days of cultivation, bacteria completely utilized perfluoroheptanoic acid and perfluorononanoic acid. Based on chromatography-mass spectrometry and ion chromatography data, a scheme for the stepwise degradation of the investigated perfluorinated acids involving the enzymes coded by novR and dhlA genes is proposed.
References
Schiavone, C., & Portesi, C. (2023). PFAS: A review of the state of the art, from legislation to analytical approaches and toxicological aspects for assessing contamination in food and environment and related risks. Applied Sciences, 13, 6696. https://doi.org/10.3390/app13116696
UNEP/POPS/COP.4/38. (2009). Report of the conference of the parties of the Stockholm convention on persistent organic pollutants on the work of its fourth meeting. Geneva: Stockholm Convention Secretariat, 66–69.
Ahrens, L., Xie, Z., & Ebinghaus, R. (2010). Distribution of perfluoroalkyl compounds in seawater from Northern Europe, Atlantic Ocean, and Southern Ocean. Chemosphere, 78, 1011–1016.
Cai, M., Zhao, Z., Yin, Z., Ahrens, L., Huang, P., Cai, M., Yang, H., He, J., Sturm, R., & Ebinghaus, R. (2011). Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean. Environmental Science & Technology, 44, 661–668. https://doi.org/10.1021/es2026278
Jin, Y. H., Liu, W., Sato, I., Nakayama, S. F., Sasaki, K., Saito, N., & Tsuda, S. (2009). PFOS and PFOA in environmental and tap water in China. Chemosphere, 77, 605–611. https://doi.org/10.1016/j.chemosphere.2009.08.058
Zhao, Y., Wong, C., & Wong, M. (2012). Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere, 89, 355–368. https://doi.org/10.1016/j.chemosphere.2012.05.043
Choubisa, S. L. (2023). Industrial fluoride emissions are dangerous to animal health, but most ranchers are unaware of it. Austin Environmental Science, 8(1), 1089.
Herzke, D., Huber, S., Bervoets, L., D’Hollander, W., Hajslova, J., Pulkrabova, J., Brambilla, G., De Filippis, S. P., Klenow, S., & Heinemeyer, G. (2013). Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environmental Science and Pollution Research, 20, 7930–7939. https://doi.org/10.1007/s11356-013-1777-8
Ghisi, R., Vamerali, T., & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, 326–341. https://doi.org/10.1016/j.envres.2018.10.023
Kowalczyk, J., Ehlers, S., Oberhausen, A., Tischer, M., Fürst, P., Schafft, H., & Lahrssen-Wiederholt, M. (2013). Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed. Journal of Agricultural and Food Chemistry, 61, 2903–2912. https://doi.org/10.1021/jf304680j
Arinaitwe, K., Koch, A., Taabu-Munyaho, A., Marien, K., Reemtsma, T., & Berger, U. (2020). Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa. Chemosphere, 260, 127536. https://doi.org/10.1016/j.chemosphere.2020.127536
Kannan, K., Koistinen, J., Beckmen, K., Evans, T., Gorzelany, J. F., Hansen, K. J., Jones, P. D., Helle, E., Nyman, M., & Giesy, J. P. (2011). Accumulation of perfluorooctane sulfonate in marine mammals. Environmental Science & Technology, 35, 1593–1598. https://doi.org/10.1021/es001873w
Scheurer, M., & Nodler, K. (2021). Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea - an unintended aqueous extraction. Food Chemistry, 351, 129304.
Marquis, R. E., Clock, S. A., & Mota-Meira, M. (2003). Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiology Reviews, 26, 493–510.
Benhamada, O., Benhamada, N., & Leghouchi, E. (2023). Oxidative stress induced by fluorine in Xanthoria parietina (L.) Th. F. International Journal of Secondary Metabolism, 10(1), 124–136. https://doi.org/10.21448/ijsm.1136546
Miranda, G., Ferreira, M., Bittencourt, L., Lima, L., Puty, B., & Lima, R. (2021). Chapter 17 - The role of oxidative stress in fluoride toxicity. In V. B. Patel & V. R. Preedy (Eds.), Toxicology (pp. 157–163). Academic Press. https://doi.org/10.1016/B978-0-12-819092-0.00017-0
Zhang, X., Gao, X., & Li, C. (2019). Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. Scientific Reports, 9, 14488. https://doi.org/10.1038/s41598-019-50914-6
Zizhen, W., Junfeng, S., Amjad, A., Xiaofen, H., & Zhao, W. (2021). Study on the simultaneous removal of fluoride, heavy metals and nitrate by calcium precipitating strain Acinetobacter sp. H12. Journal of Hazardous Materials, 405, 124255. https://doi.org/10.1016/j.jhazmat.2020.124255
Huang, S., & Jaffé, P. R. (2019). Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environmental Science & Technology, 53(19), 11410–11419. https://doi.org/10.1021/acs.est.9b04047
Harris, J., Gross, M., Kemball, J., Farajollahi, S., Dennis, P., Sitko, J., Steel, J. J., Almand, E., Kelley-Loughnane, N., & Varaljay, V. A. (2021). Draft genome sequence of the bacterium Delftia acidovorans strain D4B, isolated from soil. Microbiology Resource Announcements, 10(44), e0063521. https://doi.org/10.1128/MRA.00635-21
Yi, L., Tang, C., Peng, Q., Peng, Q., & Chai, L. (2015). Draft genome sequence of perfluorooctane acid-degrading bacterium Pseudomonas parafulva YAB-1. Genome Announcements, 3(5), e00935-15. https://doi.org/10.1128/genomeA.00935-15
Kwon, B. G., Lim, H. J., Na, S. H., Choi, B. I., Shin, D. S., & Chung, S. Y. (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere, 109, 221–225. https://doi.org/10.1016/j.chemosphere.2014.01.072
Chetverikov, S., & Loginov, O. (2019). A new Ensifer adhaerens strain M1 is capable of transformation of perfluorocarboxylic acids. Microbiology, 88, 115–117. https://doi.org/10.1134/S0026261718060085
Raymond, R. L. (1961). Microbial oxidation of n-paraffinic hydrocarbons. Developments in Industrial Microbiology, 2, 23–54.
Li, X., Xiong, C., Huixin, L., Feng, H., & Mingxiang, L. (2016). Characterization of the biosorption and biodegradation properties of Ensifer adhaerens: A potential agent to remove polychlorinated biphenyls from contaminated water. Journal of Hazardous Materials, 302, 314–322. https://doi.org/10.1016/j.jhazmat.2015.09.066
Limin, M., Songsong, C., Jing, Y., Panpan, Y., Ying, L., & Kathryn, S. (2017). Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes. International Biodeterioration & Biodegradation, 116, 133–140. https://doi.org/10.1016/j.ibiod.2016.10.022
DiCenzo, G. C., Debiec, K., Krzysztoforski, J., Uhrynowski, W., Mengoni, A., Fagorzi, C., Gorecki, A., Dziewit, L., Bajda, T., & Rzepa, G. (2018). Genomic and biotechnological characterization of the heavy-metal resistant, arsenic-oxidizing bacterium Ensifer sp. M14. Genes, 9, 379. https://doi.org/10.3390/genes9080379
Heikinheimo, P., Tuominen, V., Ahonen, A. K., Teplyakov, A., & Cooperman, B. S. (2001). Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase. Proceedings of the National Academy of Sciences of the United States of America, 98, 3121–3126.
Samygina, V. R., Moiseev, V. M., Rodina, E. V., Vorobyeva, N. N., & Popov, A. N. (2007). Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: Trapped catalytic intermediates in cryo-crystallographic studies. Journal of Molecular Biology, 366, 1305–1317.
Breaker, R. R. (2012). New insight on the response of bacteria to fluoride. Caries Research, 46, 78–81. https://doi.org/10.1159/000336397
Lesher, R. J., Bender, G. R., & Marquis, R. E. (1977). Bacteriolytic action of fluoride ions. Antimicrobial Agents and Chemotherapy, 12(3), 339–345.
Li, S., Smith, K. D., Davis, J. H., Gordon, P. B., Breaker, R. R., & Strobel, S. A. (2013). Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proceedings of the National Academy of Sciences of the United States of America, 110, 19018–19023. https://doi.org/10.1073/pnas.1310439110
Stockbridge, R. B., Lim, H. H., Otten, R., Williams, C., Shane, T., Weinberg, Z., & Miller, C. (2012). Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proceedings of the National Academy of Sciences of the United States of America, 109, 15289–15294. https://doi.org/10.1073/pnas.1210896109
McIlwain, B. C., Martin, K., Hayter, E. A., & Stockbridge, R. B. (2020). An interfacial sodium ion is an essential structural feature of Fluc family fluoride channels. Journal of Molecular Biology, 432(4), 1098–1108. https://doi.org/10.1016/j.jmb.2020.01.007
Keller, S., Pojer, F., Heide, L., & Lawson, D. (2007). Molecular replacement in the 'twilight zone': Structure determination of the non-haem iron oxygenase NovR from Streptomyces spheroides through repeated density modification of a poor molecular-replacement solution. Acta Crystallographica Section D: Biological Crystallography, 62, 1564–1570. https://doi.org/10.1107/S0907444906040169
Pojer, F., Kahlich, R., Kammerer, B., Li, S. M., & Heide, L. (2003). CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis. Journal of Biological Chemistry, 278(33), 30661–30668. https://doi.org/10.1074/jbc.M303190200
Song, J., Lee, D., Lee, K., & Kim, C. (2004). Genetic organization of the dhlA gene encoding 1,2-dichloroethane dechlorinase from Xanthobacter flavus UE15. Journal of Microbiology, 42, 188–193.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gaisar Hkudaigulov, Danil Sharipov, Sergey Starikov, Sergey Chetverikov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.