Proteomic and Morphological Analysis of Bone and Articular Cartilage Changes in Osteoarthritic Rabbits Supplemented with Edible Bird’s Nest (EBN)
DOI:
https://doi.org/10.11113/mjfas.v20n6.3634Keywords:
Osteoarthritis (OA), subchondral bone, articular cartilage, micro-computed tomography (micro-CT), edible bird’s nest (EBN).Abstract
This study is aimed at assessing the effects of Edible Bird’s Nest (EBN) on subchondral bone, articular cartilage and the expression of proteins in synovial fluid by micro-CT evaluation and histological analysis. 54 New Zealand white rabbits were induced by intra-articular injection of monosodium iodoacetate (8 mg) and divided into four groups: negative control (n=9): non-treated osteoarthritis; positive control (n=15): OA + diclofenac sodium 2 mg/kg daily orally; low dosage (n=15): OA + 75 mg/kg hydrolyzed EBN; and high dosage (n=15): OA + 150 mg/kg hydrolyzed EBN. The joints were harvested and subjected to micro-CT analysis and histological evaluation, and the synovial fluid was subjected to LCMS/MS analysis. Micro-CT analysis showed an increase in bone volume and a decrease in total porosity in the treatment group that showed bone integrity improvement. Histopathological results revealed comparable changes between the positive control group and the EBN treatment group. There was upregulation of proteins involved in the resolution of inflammation and downregulation of proteins associated with the bone resorption process. Morphology evaluation showed that EBN supplementation has a bone-improving effect by inhibiting osteoclastic activity. Protein expression showed chondroprotection and bone improvement through the action of several proteins via various signaling pathways. The morphological and molecular findings suggest the potential use of EBN as beneficial alternative for osteoarthritis treatment by improving bone quality and modulating inflammatory responses.
References
Johnson, V. L., Hunter, D. J. (2014). The epidemiology of osteoarthritis. Best Practice & Research Clinical Rheumatology. https://doi.org/10.1016/j.berh.2014.01.004
Shirai, T., Kobayashi, M., Nishitani, K., Satake, T., Kuroki, H., Nakagawa, Y., Nakamura, T. (2011). Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.21394
Sulaiman, S. Z. S., Tan, W. M., Radzi, R., Shafie, I. N. F., Ajat, M., Mansor, R., Mohamed, S., Rahmad, N., Ng, A. M. H., Lau, S. F. (2022). Synovial fluid proteome profile of surgical versus chemical induced osteoarthritis in rabbits. PeerJ. https://doi.org/10.7717/peerj.12897
Batiste, D. L., Kirkley, A., Laverty, S., Thain, L. M. F., Spouge, A. R., Gati, J. S., Foster, P. J., Holdsworth, D. W. (2004). High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthritis and Cartilage, 12, 614–626. https://doi.org/10.1016/j.joca.2004.03.002
Gharbi, M., Deberg, M., Henrotin, Y. (2011). Application for proteomic techniques in studying osteoarthritis: A review. Frontiers in Physiology. https://doi.org/10.3389/fphys.2011.00090
Mobasheri, A. (2011). Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Frontiers in Physiology. https://doi.org/10.3389/fphys.2011.00108
Guo, H., Yin, W., Zou, Z., Zhang, C., Sun, M., Min, L., Yang, L., Kong, L. (2021). Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: An in vivo and in vitro study. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2020.06.020
Crofford, L. J. (2013). Use of NSAIDs in treating patients with arthritis. Arthritis Research & Therapy. https://doi.org/10.1186/ar4174
Thomas, A., Eichenberger, G., Kempton, C., Pape, D., York, S., Decker, A. M., Kohia, M. (2009). Recommendations for the treatment of knee osteoarthritis, using various therapy techniques, based on categorizations of a literature review. Journal of Geriatric Physical Therapy. https://doi.org/10.1519/00139143-200932010-00007
Goudarzi, R., Reid, A., McDougall, J. J. (2018). Evaluation of the novel avocado/soybean unsaponifiable Arthrocen to alter joint pain and inflammation in a rat model of osteoarthritis. PLoS One. https://doi.org/10.1371/journal.pone.0191906
Kang, Y. H., Lee, H. J., Lee, C. J., Park, J. S. (2019). Natural products as sources of novel drug candidates for the pharmacological management of osteoarthritis: A narrative review. Biomolecules & Therapeutics. https://doi.org/10.4062/biomolther.2019.139
Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the East.” Food Research International. https://doi.org/10.1016/j.foodres.2005.02.008
Hobbs, J. J. (2004). Problems in the harvest of edible birds’ nests in Sarawak and Sabah, Malaysian Borneo. Biodiversity & Conservation. https://doi.org/10.1023/B:BIOC.0000047905.79709.7f
Akmal, M. N., Intan-Shameha, A. R., Mansor, R., Ideris, A., Omar, A. R., Abu, J., Idris, M. F., Ajat, M. (2020). High-dose edible bird’s nest extract (EBN) upregulates LDL-R via suppression of HMGCR gene expression in HepG2 cell lines. Sains Malaysiana. https://doi.org/10.17576/jsm-2020-4910-09
Kong, Y. C., Keung, W. M., Yip, T. T., Ko, K. M., Tsao, S. W., Ng, M. H. (1987). Evidence that epidermal growth factor is present in swiftlet’s (Collocalia) nest. Comparative Biochemistry and Physiology Part B: Biochemistry, 87, 221–226. https://doi.org/10.1016/0305-0491(87)90133-7
Vimala, B., Hussain, H., Wan Nazaimoon, W. M. (2012). Effects of edible bird’s nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Agriculture & Immunology, 23, 303–314. https://doi.org/10.1080/09540105.2011.625494
Zainal Abidin, F., Hui, C., Luan, N., Mohd Ramli, E. S., Hun, L., Abd Ghafar, N. (2011). Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complementary and Alternative Medicine, 11, 94. https://doi.org/10.1186/1472-6882-11-94
Chua, K.-H., Lee, T.-H., Nagandran, K., Md Yahaya, N. H., Lee, C.-T., Tjih, E. T. T., Abdul Aziz, R. (2013). Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: in vitro study. BMC Complementary and Alternative Medicine, 13, 19. https://doi.org/10.1186/1472-6882-13-19
Babji, A. S., Etty Syarmila, I. K., Nur ’Aliah, D., Nurul Nadia, M., Hadi Akbar, D., Norrakiah, A. S., Ghassem, M., Najafian, L., Salma, M. Y. (2018). Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal.
Pritzker, K. P. H., Gay, S., Jimenez, S. A., Ostergaard, K., Pelletier, J. P., Revell, K., Salter, D., van den Berg, W. B. (2006). Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis and Cartilage, 14, 13–29. https://doi.org/10.1016/j.joca.2005.07.014
Chen, Y. Y., Lin, S. Y., Yeh, Y. Y., Hsiao, H. H., Wu, C. Y., Chen, S. T., Wang, A. H. J. (2005). A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis. https://doi.org/10.1002/elps.200410381
Lau, B. Y. C., Othman, A. (2019). Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One, 14, e0221052. https://doi.org/10.1371/journal.pone.0221052
Xu, J., Yan, L., Yan, B., Zhou, L., Tong, P., Shan, L. (2020). Osteoarthritis pain model induced by intra-articular injection of mono-iodoacetate in rats. Journal of Visualized Experiments. https://doi.org/10.3791/60649
Guzman, R. E., Evans, M. G., Bove, S., Morenko, B., Kilgore, K. (2003). Mono-Iodoacetate-Induced Histologic Changes in Subchondral Bone and Articular Cartilage of Rat Femorotibial Joints: An Animal Model of Osteoarthritis. Toxicologic Pathology. https://doi.org/10.1080/01926230390241800
Roh, K. B., Lee, Jienny, Kim, Y. S., Park, J., Kim, J. H., Lee, Jongsung, Park, D. (2012). Mechanisms of edible bird’s nest extract-induced proliferation of human adipose-derived stem cells. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2012/797520
Dempster, D. W. (2000). The contribution of trabecular architecture to cancellous bone quality. Journal of Bone and Mineral Research. https://doi.org/10.1359/jbmr.2000.15.1.20
Bobinac, D., Spanjol, J., Zoricic, S., Maric, I. (2003). Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. https://doi.org/10.1016/S8756-3282(02)00982-1
Chappard, C., Peyrin, F., Bonnassie, A., Lemineur, G., Brunet-Imbault, B., Lespessailles, E., Benhamou, C. L. (2006). Subchondral bone micro-architectural alterations in osteoarthritis: A synchrotron micro-computed tomography study. Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2005.09.008
Matsukawa, N., Matsumoyo, M., Bukawa, W., Chihi, H., Nakayama, K., Hara, H., Tsukahara, T. (2011). Improvement of bone strength and dermal thickness due to dietary edible bird’s nest extract in ovariectomized rats. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1271/bbb.100705
Heaney, R. P. (2004). Phosphorus Nutrition and the Treatment of Osteoporosis. Mayo Clinic Proceedings. https://doi.org/10.4065/79.1.91
Bateman, T. A., & Countryman, S. (2002). Osteoprotegerin and bone loss associated with spaceflight. Drug Discovery Today. https://doi.org/10.1016/S1359-6446(02)02260-2
Hou, Z. P., Tang, S. Y., Ji, H. R., He, P. Y., Li, Y. H., Dong, X. L., Du, M. N., Maznah, I., & He, W. J. (2021). Edible Bird’s Nest attenuates menopause-related bone degeneration in rats via increasing bone estrogen-receptor expression. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-019-3209-1
Nguyen, K. C. T., & Cho, K. A. (2017). Versatile functions of caveolin-1 in aging-related diseases. Chonnam Medical Journal. https://doi.org/10.4068/cmj.2017.53.1.28
Zou, H., Stoppani, E., Volonte, D., & Galbiati, F. (2011). Caveolin-1, cellular senescence and age-related diseases. Mechanisms of Ageing and Development. https://doi.org/10.1016/j.mad.2011.11.001
Dai, S. M., Shan, Z. Z., Nakamura, H., Masuko-Hongo, K., Kato, T., Nishioka, K., & Yudoh, K. (2006). Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: Possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis & Rheumatism. https://doi.org/10.1002/art.21639
Min, T., Sheng, L. Y., Chao, C., Jian, T., Guang, G. S., & Hua, L. G. (2015). Correlation between osteopontin and caveolin-1 in the pathogenesis and progression of osteoarthritis. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2015.2433
Miosge, N., Hartmann, M., Maelicke, C., & Herken, R. (2004). Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochemistry and Cell Biology. https://doi.org/10.1007/s00418-004-0697-6
Man, G. S., & Mologhianu, G. (2014). Osteoarthritis pathogenesis - a complex process that involves the entire joint. Journal of Medical Life.
Hosseininia, S., Weis, M. A., Rai, J., Kim, L., Funk, S., Dahlberg, L. E., & Eyre, D. R. (2016). Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2016.01.001
Munier, C. C., Ottmann, C., & Perry, M. W. D. (2021). 14-3-3 modulation of the inflammatory response. Pharmacological Research. https://doi.org/10.1016/j.phrs.2020.105236
Butt, A. Q., Ahmed, S., Maratha, A., & Miggin, S. M. (2012). 14-3-3ε and 14-3-3σ inhibit toll-like receptor (TLR)-mediated proinflammatory cytokine induction. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M112.367490
Dakappagari, N., Neely, L., Tangri, S., Lundgren, K., Hipolito, L., Estrellado, A., Burrows, F., & Zhang, H. (2010). An investigation into the potential use of serum Hsp70 as a novel tumour biomarker for Hsp90 inhibitors. Biomarkers. https://doi.org/10.3109/13547500903261347
Grossin, L., Cournil-Henrionnet, C., Pinzano, A., Gaborit, N., Dumas, D., Etienne, S., Stoltz, J. F., Terlain, B., Netter, P., Mir, L. M., & Gillet, P. (2006). Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. FASEB Journal. https://doi.org/10.1096/fj.04-2889com
Takahashi, K., Kubo, T., Goomer, R. S., Amiel, D., Kobayashi, K., Imanishi, J., Teshima, R., & Hirasawa, Y. (1997). Analysis of heat shock proteins and cytokines expressed during early stages of osteoarthritis in a mouse model. Osteoarthritis and Cartilage. https://doi.org/10.1016/S1063-4584(97)80036-2
Tang, D. D. (2018). The dynamic actin cytoskeleton in smooth muscle. In Advances in Pharmacology. https://doi.org/10.1016/bs.apha.2017.06.001
Langelier, E., Suetterlin, R., Hoemann, C. D., Aebi, U., Buschmann, M. D. (2000). The chondrocyte cytoskeleton in mature articular cartilage: Structure and distribution of actin, tubulin, and vimentin filaments. Journal of Histochemistry and Cytochemistry. https://doi.org/10.1177/002215540004801002
Kamada, T., Kurokawa, M. S., Kato, T., Takenouchi, K., Takahashi, K., Yoshioka, T., Uchida, T., Mitsui, H., Suematsu, N., Okamoto, K., Yudo, K., Katayama, Y., & Nakamura, H. (2012). Proteomic analysis of bone marrow-adherent cells in rheumatoid arthritis and osteoarthritis. International Journal of Rheumatic Diseases. https://doi.org/10.1111/j.1756-185X.2012.01702.x
Lee, T. H., Wani, W. A., Lee, C. H., Cheng, K. K., Shreaz, S., Wong, S., Hamdan, N., & Azmi, N. A. (2021). Edible Bird’s Nest: The functional values of the prized animal-based bioproduct from Southeast Asia – A review. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2021.626233
Lehenkari, P., Hentunen, T. A., Laitala-Leinonen, T., Tuukkanen, J., & Väänänen, H. K. (1998). Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by affecting the steady state intracellular pH and Ca2+. Experimental Cell Research. https://doi.org/10.1006/excr.1998.4071
Yang, Y., & Morand, E. (2006). The anti-inflammatory role of annexin-1 in arthritis. Current Rheumatology Reviews. https://doi.org/10.2174/157339706778699887
Sugimoto, M. A., Vago, J. P., Teixeira, M. M., & Sousa, L. P. (2016). Annexin A1 and the resolution of inflammation: Modulation of neutrophil recruitment, apoptosis, and clearance. Journal of Immunology Research. https://doi.org/10.1155/2016/8239258
Rosenberg, J. H., Rai, V., Dilisio, M. F., Sekundiak, T. D., & Agrawal, D. K. (2017). Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-017-3078-x
Smyth, T., Harris, H. J., Brown, A., Tötemeyer, S., Farnfield, B. A., Maskell, D. J., Matsumoto, M., Plevin, R., & Alldridge, L. C. (2006). Differential modulatory effects of annexin 1 on nitric oxide synthase induction by lipopolysaccharide in macrophages. Immunology. https://doi.org/10.1111/j.1365-2567.2005.02307.x
Choi, J., Park, K., & Park. (2019). NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells. https://doi.org/10.3390/cells8070734
Usui, M., Xing, L., Drissi, H., Zuscik, M., O’Keefe, R., Chen, D., & Boyce, B. F. (2008). Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. Journal of Bone and Mineral Research. https://doi.org/10.1359/jbmr.071025
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sharifah Zakiah Syed Sulaiman, Nor Shahira Solehah Umran, Suhaila Mohamed, Jalila Abu, Angela Min Hwei Ng, Benjamin Yii Chung Lau, Kok Song Lai, Nazhan Ilias, Seng Fong Lau, Mokrish Ajat
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.