Fruit Wastes and Crop Residues as Nutrient Sources for Bacterial Nanocellulose Production: A Review

Authors

  • Yamunathevi Mathivanan Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Shafinaz Shahir Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Zaharah Ibrahim Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Nik Ahmad Nizam Nik Malek ᵃDepartment of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia ᵇCentre for Sustainable Nanomaterials (CSNano), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n5.3522

Keywords:

Bacterial nanocellulose, fruit wastes, crop residues, agro-industrial wastes, waste management.

Abstract

Nanocellulose has been developed and used as a bio-based advanced material in modern biotechnology. Lately, bacterial nanocellulose (BNC) emerged as a prominent biopolymer because of its multi-functional application in various industries, such as food, biomedical, cosmetics, and environmental. The emerging concern for large-scale BNC production is the high fermentation costs, low productivity, and expensive culture medium. To minimise this issue, agro-industrial wastes can be used as feedstock. Recently, many studies have investigated the utilization of agro-industrial wastes as potential nutrient sources for BNC production. However, a comprehensive review of BNC production from fruit wastes and crop residues is lacking. To address this gap, the current review focuses on the utilization of fruit wastes and crop residues for BNC production, including its advantages and disadvantages. This study contributes to the scientific community by (a) providing an insight into fruit waste and crop residue utilization for BNC synthesis (b) an overview on its advantages and disadvantages (c) providing recommendations and future perspectives on BNC production from agro-industrial waste utilization. The sustainable concept of BNC production utilizing agro-industrial wastes opens a way for industries to produce BNC on a larger scale.

References

Abba, M., Abdullahi, M., Nor, M. H. M., Chong, C. S., & Ibrahim, Z. (2017). Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnology, 12(1), 52–56. https://doi.org/10.1049/iet-nbt.2017.0024

Abdelraof, M., Hasanin, M. S., & El-Saied, H. (2019). Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, 211, 75–83. https://doi.org/10.1016/j.carbpol.2019.01.095

Abdullah, S. S., Shirai, Y., Bahrin, E. K., & Hassan, M. A. (2015). Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Industrial Crops and Products, 63, 357–361. https://doi.org/10.1016/j.indcrop.2014.10.006

Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E. H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60315-9

Adnan, A. B. (2015). Production of bacterial cellulose using low-cost media (Doctoral dissertation, University of Waikato, Hamilton, New Zealand).

Akhter, S., Khan, M. A., Mahmud, S., Biki, S. P., Shamsuzzoha, M., Hasan, S. M. K., & Ahmed, M. (2022). Biosynthesis and characterization of bacterial nanocellulose and polyhydroxyalkanoate films using bacterial strains isolated from fermented coconut water. Process Biochemistry, 122, 214–223. https://doi.org/10.1016/j.procbio.2022.09.006

Al-Hamaiedeh, H., Abdulateef, O., Najeeb, L., & Al-Hamaideh, K. (2023). Using date pomace juice, a byproduct of date processing, as a substrate for the production of biological nanocellulose. SSRN. https://doi.org/10.2139/ssrn.4470966

Andritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega, 3(8), 10365–10373. https://doi.org/10.1021/acsomega.8b01315

Ao, H., & Xun, X. (2024). Bacterial nanocellulose: Methods, properties, and biomedical applications. Nanotechnology and Nanomaterials. https://doi.org/10.5772/intechopen.114223

Awogbemi, O., & Kallon, D. V. (2022). Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6, 100229. https://doi.org/10.1016/j.cscee.2022.100229

Barja, F. (2021). Bacterial nanocellulose production and biomedical applications. Journal of Biomedical Research, 35(4), 310–317. https://doi.org/10.7555/JBR.35.20210036

Bhaladhare, S., & Das, D. (2022). Cellulose: A fascinating biopolymer for hydrogel synthesis. Journal of Materials Chemistry B, 10(12), 1923–1945. https://doi.org/10.1039/d1tb02848k

Burns, D. T., Johnston, E.-L., & Walker, M. J. (2020). Authenticity and the potability of coconut water: A critical review. Journal of AOAC International, 103(3), 800–806. https://doi.org/10.1093/jaocint/qsz008

Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications.

Chen, G., Wu, G., Chen, L., Wang, W., Hong, F. F., & Jönsson, L. J. (2019). Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 12(4), 677–687. https://doi.org/10.1111/1751-7915.13401

Chen, H. H., Chen, L. C., Huang, H. C., & Lin, S. B. (2011). In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose, 18, 1573–1583. https://doi.org/10.1007/s10570-011-9594-z

Cielecka, I., Ryngajłło, M., Maniukiewicz, W., & Bielecki, S. (2021). Highly stretchable bacterial cellulose produced by Komagataeibacter hansenii SI1. Polymers, 13(24), 4455. https://doi.org/10.3390/polym13244455

Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02027

De Souza, S. S., Berti, F. V., de Oliveira, K. P., Pittella, C. Q., de Castro, J. V., Pelissari, C., Rambo, C. R., & Porto, L. M. (2018). Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose, 26(3), 1641–1655. https://doi.org/10.1007/s10570-018-2178-4

El-Beltagi, H. S., Eshak, N. S., Mohamed, H. I., Bendary, E. S., & Danial, A. W. (2022). Physical characteristics, mineral content, and antioxidant and antibacterial activities of Punica granatum or Citrus sinensis peel extracts and their applications to improve cake quality. Plants, 11(13), 1740. https://doi.org/10.3390/plants11131740

El-Naggar, N. E.-A., Mohammed, A. B., & El-Malkey, S. E. (2023). Bacterial nanocellulose production using cantaloupe juice: Statistical optimization and characterization. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26642-9

El-Saied, H., El-Diwany, A. I., Basta, A. H., Atwa, N. A., & El-Ghwas, D. E. (2008). Production and characterization of economical bacterial cellulose. BioResources, 3(4), 1196–1217. https://doi.org/10.15376/biores.3.4.1196-1217

Fan, H., Zhang, M., Bhandari, B., & Yang, C. (2020). Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends in Food Science & Technology, 95, 86–96. https://doi.org/10.1016/j.tifs.2019.11.008

Fathiyah Sharifah, S. M., Shahril, M., & Junaidi, Z. (2021). Oil palm frond juice and coconut water as alternative fermentation substrates for bacterial cellulose production. IOP Conference Series: Materials Science and Engineering, 1092(1), 012055. https://doi.org/10.1088/1757-899x/1092/1/012055

Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956–967. https://doi.org/10.1007/s10924-019-01403-4

Figueiredo, A. R. P., Vilela, C., Neto, C. P., Silvestre, A. J. D., & Freire, C. S. R. (2014). Bacterial cellulose-based nanocomposites: Roadmap for innovative materials. In Nanocellulose Polymer Nanocomposites: Fundamentals and Applications (pp. 17–64). Scrivener Publishing LLC. https://doi.org/10.1002/9781118872246.ch2

García-Sánchez, M. E., Robledo-Ortiz, J. R., Jiménez-Palomar, I., González-Reynoso, O., & González-García, Y. (2019). Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana de Ingeniería Química, 19(2), 851–865. https://doi.org/10.24275/rmiq/bio743

Gorgieva, S., Jančič, U., Cepec, E., & Trček, J. (2023). Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244, 125368. https://doi.org/10.1016/j.ijbiomac.2023.125368

Güzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115, 126–133. https://doi.org/10.1016/j.fbp.2019.03.009

Hasanin, M. S., Abdelraof, M., Hashem, A. H., & El Saied, H. (2023). Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-023-02031-3

Haris, S., Alam, M., Galiwango, E., Mohamed, M. M., Kamal-Eldin, A., & Al-Marzouqi, A. H. (2023). Characterization analysis of date fruit pomace: An underutilized waste bioresource rich in dietary fiber and phenolic antioxidants. Waste Management, 163, 34–42. https://doi.org/10.1016/j.wasman.2023.03.027

Hestrin, S. a., & Schramm, M. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Journal of General Microbiology, 11, 123–129. https://doi.org/10.1099/00221287-11-1-123

Hikal, W. M., Said-Al Ahl, H. A. H., Bratovcic, A., Tkachenko, K. G., Sharifi-Rad, J., Kačániová, M., Elhourri, M., & Atanassova, M. (2022). Banana peels: A waste treasure for human beings. Evidence-Based Complementary and Alternative Medicine, 2022, 7616452. https://doi.org/10.1155/2022/7616452

Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633–649. https://doi.org/10.1111/1751-7915.13386

Jozala, A. F., Pértile, R. A., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A., Jr. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3

Jung, H.-I., Jeong, J.-H., Lee, O.-M., Park, G.-T., Kim, K.-K., Park, H.-C., Lee, S.-M., Kim, Y.-G., & Son, H.-J. (2010). Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource Technology, 101(10), 3602–3608. https://doi.org/10.1016/j.biortech.2009.12.111

Kadier, A., Ilyas, R. A., Huzaifah, M. R., Harihastuti, N., Sapuan, S. M., Harussani, M. M., Azlin, M. N., Yuliasni, R., Ibrahim, R., Atikah, M. S., Wang, J., Chandrasekhar, K., Islam, M. A., Sharma, S., Punia, S., Rajasekar, A., Asyraf, M. R., & Ishak, M. R. (2021). Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers, 13(19), 3365. https://doi.org/10.3390/polym13193365

Kelebek, H. (2010). Sugars, organic acids, phenolic compositions, and antioxidant activity of grapefruit (Citrus Paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269–274. https://doi.org/10.1016/j.indcrop.2010.04.023

Keshk, S. M. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques, 04(02). https://doi.org/10.4172/2155-9821.1000150

Khan, H., Raghuvanshi, S., Saroha, V., Singh, S., Baba, W. N., Mudgil, P., & Dutt, D. (2023). Biotransformation of banana peel waste into bacterial nanocellulose and its modification for active antimicrobial packaging using polyvinyl alcohol with in-situ generated silver nanoparticles. Food Packaging and Shelf Life, 38, 101115. https://doi.org/10.1016/j.fpsl.2023.101115

Kim, J., & Kim, K. H. (2017). Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry, 57, 64–71. https://doi.org/10.1016/j.procbio.2017.04.003

Kiziltas, E. E., Kiziltas, A., Bollin, S. C., & Gardner, D. J. (2015). Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydrate Polymers, 127, 381–389. https://doi.org/10.1016/j.carbpol.2015.03.029

Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148(1–3), 245–256. https://doi.org/10.1007/s12010-007-8119-6

Kumar Gupta, P., Sai Raghunath, S., Venkatesh Prasanna, D., Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K., & Geetha, K. (2019). An update on overview of cellulose, its structure and applications. Cellulose. https://doi.org/10.5772/intechopen.84727

Kuo, C.-H., Chen, J.-H., Liou, B.-K., & Lee, C.-K. (2016). Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 53, 98–103. https://doi.org/10.1016/j.foodhyd.2014.12.034

Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76, 333–335. https://doi.org/10.1016/j.carbpol.2008.11.009

Le, H. V., Dao, N. T., Bui, H. T., Kim Le, P. T., Le, K. A., Tuong Tran, A. T., Nguyen, K. D., Mai Nguyen, H. H., & Ho, P. H. (2023). Bacterial cellulose aerogels derived from pineapple peel waste for the adsorption of dyes. ACS Omega, 8(37), 33412–33425. https://doi.org/10.1021/acsomega.3c03130

Lee, A. C., Salleh, M. M., Ibrahim, M. F., Bahrin, E. K., Jenol, M. A., & Abd-Aziz, S. (2022). Pineapple peel as alternative substrate for bacterial nanocellulose production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03169-7

Lestari, P., Elfrida, N., Suryani, A., & Suryadi, Y. (2014). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 7(1), 75–80. https://doi.org/10.12816/0008218

Li, J., Chen, G., Zhang, R., Wu, H., Zeng, W., & Liang, Z. (2018). Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from kombucha tea. Biotechnology and Applied Biochemistry, 66(1), 108–118. https://doi.org/10.1002/bab.1703

Li, T., Shen, P., Liu, W., Liu, C., Liang, R., Yan, N., & Chen, J. (2014). Major polyphenolics in pineapple peels and their antioxidant interactions. International Journal of Food Properties, 17(8), 1805–1817. https://doi.org/10.1080/10942912.2012.732168

Liitiä, T., Maunu, S. L., & Hortling, B. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose, 10, 307–316. https://doi.org/10.1023/A:1027302526861

Liu, D., Meng, Q., & Hu, J. (2023). Bacterial nanocellulose hydrogel: A promising alternative material for the fabrication of engineered vascular grafts. Polymers, 15(18), 3812. https://doi.org/10.3390/polym15183812

Liu, Y., Dong, J., Liu, G., Yang, H., Liu, W., Wang, L., Kong, C., Zheng, D., Yang, J., Deng, L., & Wang, S. (2015). Co-digestion of tobacco waste with different agricultural biomass feedstocks and the inhibition of tobacco viruses by anaerobic digestion. Bioresource Technology, 189, 210–216. https://doi.org/10.1016/j.biortech.2015.04.003

Machado, R. T. A., Meneguin, A. B., Sábio, R. M., Franco, D. F., Antonio, S. G., Gutierrez, J., Tercjak, A., Berretta, A. A., Ribeiro, S. J. L., Lazarini, S. C., Lustri, W. R., & Barud, H. S. (2018). Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Industrial Crops and Products, 122, 637–646. https://doi.org/10.1016/j.indcrop.2018.06.048

Malaysia Palm Oil Council. (2023). Retrieved from http://www.mpoc.org.my/ on 4 November 2023.

Mathivanan, Y., Shahir, S., Ibrahim, Z., & Malek, N. A. (2024). Isolation and characterization of amorphous nanocellulose producing Comamonas terrae YSZ sp. from pineapple wastes. Polymer Bulletin. https://doi.org/10.1007/s00289-024-05433-4

Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., & Bahador, A. (2015). Effect of purification on nano microbial cellulose pellicle properties. Procedia Materials Science, 11, 206–211. https://doi.org/10.1016/j.mspro.2015.11.108

Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10), 2321. https://doi.org/10.3390/ijerph15102321

Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O., & Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), 639. https://doi.org/10.3390/ma10060639

Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257. https://doi.org/10.3390/nano7090257

Naomi, R., Hj Idrus, R., & Fauzi, M. B. (2020). Plant- vs. bacterial-derived cellulose for wound healing: A review. International Journal of Environmental Research and Public Health, 17(18), 6803. https://doi.org/10.3390/ijerph17186803

Nguyen, V. T., Flanagan, B., Mikkelsen, D., Ramirez, S., Rivas, L., Gidley, M. J., & Dykes, G. A. (2010). Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Carbohydrate Polymers, 80(2), 337–343. https://doi.org/10.1016/j.carbpol.2009.11.019

Onuoha, I. C., Chinonye, J. E., & Chibuikem, I. N. U. (2011). In vitro prevention of browning in plantain culture. OnLine Journal of Biological Sciences, 11(1), 13–17. https://doi.org/10.3844/ojbsci.2011.13.17

Palmonari, A., Cavallini, D., Sniffen, C., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244–6249. https://doi.org/10.3168/jds.2019-17644

Perna Manrique, O., Jaramillo Lanchero, R., & Vitola Garrido, L. (2018). Effect of the source of carbon and vitamin C present in tropical fruits, on the production of cellulose by. Indian Journal of Science and Technology, 11(22), 1–8. https://doi.org/10.17485/ijst/2018/v11i22/122280

Pham, T. T., & Tran, T. T. (2023). Evaluation of the crystallinity of bacterial cellulose produced from pineapple waste solution by using Acetobacter xylinum. ASEAN Engineering Journal, 13(2), 81–91. https://doi.org/10.11113/aej.v13.18868

R. R., Philip, E., Thomas, D., Madhavan, A., Sindhu, R., Binod, P., Varjani, S., Awasthi, M. K., & Pandey, A. (2021). Bacterial nanocellulose: Engineering, production, and applications. Bioengineered, 12, 11463. https://doi.org/10.1080/21655979.2021.2009753

Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2015/280784

Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49, 151–159. https://doi.org/10.1016/j.bjm.2017.12.012

Römling, U., & Galperin, M. Y. (2015). Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545–557. https://doi.org/10.1016/j.tim.2015.05.005

Roslan, A. M., Zahari, M. A., Hassan, M. A., & Shirai, Y. (2014). Investigation of oil palm frond properties for use as biomaterials and biofuels. Tropical Agriculture and Development, 58, 26–29. https://doi.org/10.11248/jsta.58.26

Ryngajłło, M., Jacek, P., Cielecka, I., Kalinowska, H., & Bielecki, S. (2019). Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Applied Microbiology and Biotechnology, 103(16), 6673–6688. https://doi.org/10.1007/s00253-019-09904-x

Sahari, N. S., Shahir, S., Ibrahim, Z., Hasmoni, S. H., & Altowayti, W. A. (2023). Bacterial nanocellulose and its application in heavy metals and dyes removal: A review. Environmental Science and Pollution Research, 30(51), 110069–110078. https://doi.org/10.1007/s11356-023-30067-w

Said Azmi, S. N., Samsu, Z. ’Asyiqin, Mohd Asnawi, A. S., Ariffin, H., & Syed Abdullah, S. S. (2023). The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5, 100327. https://doi.org/10.1016/j.carpta.2023.100327

Sijabat, E. K., Nuruddin, A., Aditiawati, P., & Sunendar Purwasasmita, B. (2020). Optimization on the synthesis of bacterial nanocellulose (BNC) from banana peel waste for water filter membrane applications. Materials Research Express, 7(5), 055010. https://doi.org/10.1088/2053-1591/ab8df7

Sukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11. https://doi.org/10.1186/s13068-018-1207-8

Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research. https://doi.org/10.1016/j.afres.2022.100050

Tabaii, M. J., & Emtiazi, G. (2016). Comparison of bacterial cellulose production among different strains and fermented media. Applied Food Biotechnology, 3, 35–41. https://doi.org/10.22037/afb.v3i1.10582

Valera, M. J., Torija, M. J., Mas, A., & Mateo, E. (2015). Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied Microbiology and Biotechnology, 99(3), 1349–1361. https://doi.org/10.1007/s00253-014-6198-1

Volova, T. G., Prudnikova, S. V., & Sukovatyi, A. G. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102, 7417–7428. https://doi.org/10.1007/s00253-018-9198-8

Walling, B., Bharali, P., Giridharan, B., Gogoi, B., Sorhie, V., Alemtoshi, & Mani, S. K. (2023). Bacterial nanocellulose: A novel nanostructured bio-adsorbent for green remediation technology. Acta Ecologica Sinica, 43(6), 946–967. https://doi.org/10.1016/j.chnaes.2023.02.002

Wang, J. H., He, H. Z., Wang, M. Z., Wang, S., Zhang, J., Wei, W., Xu, H. X., Lv, Z. M., & Shen, D. S. (2013). Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system. Bioresource Technology, 142, 445–453. https://doi.org/10.1016/j.biortech.2013.05.067

Wang, X., Liu, P., Wang, F., Fu, B., He, F., & Zhao, M. (2017). Influence of altitudinal and latitudinal variation on the composition and antioxidant activity of polyphenols in Nicotiana tabacum L. leaf. Emirates Journal of Food and Agriculture, 29, 359–366. https://doi.org/10.9755/ejfa.2016-09-1213

Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2011). Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 48(1), 54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006

Ye, J., Zheng, S., Zhang, Z., Yang, F., Ma, K., Feng, Y., Zheng, J., Mao, D., & Yang, X. (2019). Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274, 518–524. https://doi.org/10.1016/j.biortech.2018.12.028

Zacharof, M.-P. (2016). Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste and Biomass Valorization, 8(4), 1011–1025. https://doi.org/10.1007/s12649-016-9674-2

Zhang, S., Winestrand, S., Guo, X., Chen, L., Hong, F., & Jönsson, L. J. (2014). Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-62

Zhong, W., Zhu, C., Shu, M., Sun, K., Zhao, L., Wang, C., Ye, Z., & Chen, J. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101(18), 6935–6941. https://doi.org/10.1016/j.biortech.2010.03.142

Downloads

Published

15-10-2024