Fruit Wastes and Crop Residues as Nutrient Sources for Bacterial Nanocellulose Production: A Review
DOI:
https://doi.org/10.11113/mjfas.v20n5.3522Keywords:
Bacterial nanocellulose, fruit wastes, crop residues, agro-industrial wastes, waste management.Abstract
Nanocellulose has been developed and used as a bio-based advanced material in modern biotechnology. Lately, bacterial nanocellulose (BNC) emerged as a prominent biopolymer because of its multi-functional application in various industries, such as food, biomedical, cosmetics, and environmental. The emerging concern for large-scale BNC production is the high fermentation costs, low productivity, and expensive culture medium. To minimise this issue, agro-industrial wastes can be used as feedstock. Recently, many studies have investigated the utilization of agro-industrial wastes as potential nutrient sources for BNC production. However, a comprehensive review of BNC production from fruit wastes and crop residues is lacking. To address this gap, the current review focuses on the utilization of fruit wastes and crop residues for BNC production, including its advantages and disadvantages. This study contributes to the scientific community by (a) providing an insight into fruit waste and crop residue utilization for BNC synthesis (b) an overview on its advantages and disadvantages (c) providing recommendations and future perspectives on BNC production from agro-industrial waste utilization. The sustainable concept of BNC production utilizing agro-industrial wastes opens a way for industries to produce BNC on a larger scale.
References
Abba, M., Abdullahi, M., Nor, M. H. M., Chong, C. S., & Ibrahim, Z. (2017). Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnology, 12(1), 52–56. https://doi.org/10.1049/iet-nbt.2017.0024
Abdelraof, M., Hasanin, M. S., & El-Saied, H. (2019). Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, 211, 75–83. https://doi.org/10.1016/j.carbpol.2019.01.095
Abdullah, S. S., Shirai, Y., Bahrin, E. K., & Hassan, M. A. (2015). Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Industrial Crops and Products, 63, 357–361. https://doi.org/10.1016/j.indcrop.2014.10.006
Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E. H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60315-9
Adnan, A. B. (2015). Production of bacterial cellulose using low-cost media (Doctoral dissertation, University of Waikato, Hamilton, New Zealand).
Akhter, S., Khan, M. A., Mahmud, S., Biki, S. P., Shamsuzzoha, M., Hasan, S. M. K., & Ahmed, M. (2022). Biosynthesis and characterization of bacterial nanocellulose and polyhydroxyalkanoate films using bacterial strains isolated from fermented coconut water. Process Biochemistry, 122, 214–223. https://doi.org/10.1016/j.procbio.2022.09.006
Al-Hamaiedeh, H., Abdulateef, O., Najeeb, L., & Al-Hamaideh, K. (2023). Using date pomace juice, a byproduct of date processing, as a substrate for the production of biological nanocellulose. SSRN. https://doi.org/10.2139/ssrn.4470966
Andritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega, 3(8), 10365–10373. https://doi.org/10.1021/acsomega.8b01315
Ao, H., & Xun, X. (2024). Bacterial nanocellulose: Methods, properties, and biomedical applications. Nanotechnology and Nanomaterials. https://doi.org/10.5772/intechopen.114223
Awogbemi, O., & Kallon, D. V. (2022). Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6, 100229. https://doi.org/10.1016/j.cscee.2022.100229
Barja, F. (2021). Bacterial nanocellulose production and biomedical applications. Journal of Biomedical Research, 35(4), 310–317. https://doi.org/10.7555/JBR.35.20210036
Bhaladhare, S., & Das, D. (2022). Cellulose: A fascinating biopolymer for hydrogel synthesis. Journal of Materials Chemistry B, 10(12), 1923–1945. https://doi.org/10.1039/d1tb02848k
Burns, D. T., Johnston, E.-L., & Walker, M. J. (2020). Authenticity and the potability of coconut water: A critical review. Journal of AOAC International, 103(3), 800–806. https://doi.org/10.1093/jaocint/qsz008
Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications.
Chen, G., Wu, G., Chen, L., Wang, W., Hong, F. F., & Jönsson, L. J. (2019). Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 12(4), 677–687. https://doi.org/10.1111/1751-7915.13401
Chen, H. H., Chen, L. C., Huang, H. C., & Lin, S. B. (2011). In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose, 18, 1573–1583. https://doi.org/10.1007/s10570-011-9594-z
Cielecka, I., Ryngajłło, M., Maniukiewicz, W., & Bielecki, S. (2021). Highly stretchable bacterial cellulose produced by Komagataeibacter hansenii SI1. Polymers, 13(24), 4455. https://doi.org/10.3390/polym13244455
Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02027
De Souza, S. S., Berti, F. V., de Oliveira, K. P., Pittella, C. Q., de Castro, J. V., Pelissari, C., Rambo, C. R., & Porto, L. M. (2018). Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose, 26(3), 1641–1655. https://doi.org/10.1007/s10570-018-2178-4
El-Beltagi, H. S., Eshak, N. S., Mohamed, H. I., Bendary, E. S., & Danial, A. W. (2022). Physical characteristics, mineral content, and antioxidant and antibacterial activities of Punica granatum or Citrus sinensis peel extracts and their applications to improve cake quality. Plants, 11(13), 1740. https://doi.org/10.3390/plants11131740
El-Naggar, N. E.-A., Mohammed, A. B., & El-Malkey, S. E. (2023). Bacterial nanocellulose production using cantaloupe juice: Statistical optimization and characterization. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26642-9
El-Saied, H., El-Diwany, A. I., Basta, A. H., Atwa, N. A., & El-Ghwas, D. E. (2008). Production and characterization of economical bacterial cellulose. BioResources, 3(4), 1196–1217. https://doi.org/10.15376/biores.3.4.1196-1217
Fan, H., Zhang, M., Bhandari, B., & Yang, C. (2020). Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends in Food Science & Technology, 95, 86–96. https://doi.org/10.1016/j.tifs.2019.11.008
Fathiyah Sharifah, S. M., Shahril, M., & Junaidi, Z. (2021). Oil palm frond juice and coconut water as alternative fermentation substrates for bacterial cellulose production. IOP Conference Series: Materials Science and Engineering, 1092(1), 012055. https://doi.org/10.1088/1757-899x/1092/1/012055
Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956–967. https://doi.org/10.1007/s10924-019-01403-4
Figueiredo, A. R. P., Vilela, C., Neto, C. P., Silvestre, A. J. D., & Freire, C. S. R. (2014). Bacterial cellulose-based nanocomposites: Roadmap for innovative materials. In Nanocellulose Polymer Nanocomposites: Fundamentals and Applications (pp. 17–64). Scrivener Publishing LLC. https://doi.org/10.1002/9781118872246.ch2
García-Sánchez, M. E., Robledo-Ortiz, J. R., Jiménez-Palomar, I., González-Reynoso, O., & González-García, Y. (2019). Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana de Ingeniería Química, 19(2), 851–865. https://doi.org/10.24275/rmiq/bio743
Gorgieva, S., Jančič, U., Cepec, E., & Trček, J. (2023). Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244, 125368. https://doi.org/10.1016/j.ijbiomac.2023.125368
Güzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115, 126–133. https://doi.org/10.1016/j.fbp.2019.03.009
Hasanin, M. S., Abdelraof, M., Hashem, A. H., & El Saied, H. (2023). Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-023-02031-3
Haris, S., Alam, M., Galiwango, E., Mohamed, M. M., Kamal-Eldin, A., & Al-Marzouqi, A. H. (2023). Characterization analysis of date fruit pomace: An underutilized waste bioresource rich in dietary fiber and phenolic antioxidants. Waste Management, 163, 34–42. https://doi.org/10.1016/j.wasman.2023.03.027
Hestrin, S. a., & Schramm, M. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Journal of General Microbiology, 11, 123–129. https://doi.org/10.1099/00221287-11-1-123
Hikal, W. M., Said-Al Ahl, H. A. H., Bratovcic, A., Tkachenko, K. G., Sharifi-Rad, J., Kačániová, M., Elhourri, M., & Atanassova, M. (2022). Banana peels: A waste treasure for human beings. Evidence-Based Complementary and Alternative Medicine, 2022, 7616452. https://doi.org/10.1155/2022/7616452
Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633–649. https://doi.org/10.1111/1751-7915.13386
Jozala, A. F., Pértile, R. A., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A., Jr. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3
Jung, H.-I., Jeong, J.-H., Lee, O.-M., Park, G.-T., Kim, K.-K., Park, H.-C., Lee, S.-M., Kim, Y.-G., & Son, H.-J. (2010). Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource Technology, 101(10), 3602–3608. https://doi.org/10.1016/j.biortech.2009.12.111
Kadier, A., Ilyas, R. A., Huzaifah, M. R., Harihastuti, N., Sapuan, S. M., Harussani, M. M., Azlin, M. N., Yuliasni, R., Ibrahim, R., Atikah, M. S., Wang, J., Chandrasekhar, K., Islam, M. A., Sharma, S., Punia, S., Rajasekar, A., Asyraf, M. R., & Ishak, M. R. (2021). Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers, 13(19), 3365. https://doi.org/10.3390/polym13193365
Kelebek, H. (2010). Sugars, organic acids, phenolic compositions, and antioxidant activity of grapefruit (Citrus Paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269–274. https://doi.org/10.1016/j.indcrop.2010.04.023
Keshk, S. M. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques, 04(02). https://doi.org/10.4172/2155-9821.1000150
Khan, H., Raghuvanshi, S., Saroha, V., Singh, S., Baba, W. N., Mudgil, P., & Dutt, D. (2023). Biotransformation of banana peel waste into bacterial nanocellulose and its modification for active antimicrobial packaging using polyvinyl alcohol with in-situ generated silver nanoparticles. Food Packaging and Shelf Life, 38, 101115. https://doi.org/10.1016/j.fpsl.2023.101115
Kim, J., & Kim, K. H. (2017). Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry, 57, 64–71. https://doi.org/10.1016/j.procbio.2017.04.003
Kiziltas, E. E., Kiziltas, A., Bollin, S. C., & Gardner, D. J. (2015). Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydrate Polymers, 127, 381–389. https://doi.org/10.1016/j.carbpol.2015.03.029
Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148(1–3), 245–256. https://doi.org/10.1007/s12010-007-8119-6
Kumar Gupta, P., Sai Raghunath, S., Venkatesh Prasanna, D., Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K., & Geetha, K. (2019). An update on overview of cellulose, its structure and applications. Cellulose. https://doi.org/10.5772/intechopen.84727
Kuo, C.-H., Chen, J.-H., Liou, B.-K., & Lee, C.-K. (2016). Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 53, 98–103. https://doi.org/10.1016/j.foodhyd.2014.12.034
Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76, 333–335. https://doi.org/10.1016/j.carbpol.2008.11.009
Le, H. V., Dao, N. T., Bui, H. T., Kim Le, P. T., Le, K. A., Tuong Tran, A. T., Nguyen, K. D., Mai Nguyen, H. H., & Ho, P. H. (2023). Bacterial cellulose aerogels derived from pineapple peel waste for the adsorption of dyes. ACS Omega, 8(37), 33412–33425. https://doi.org/10.1021/acsomega.3c03130
Lee, A. C., Salleh, M. M., Ibrahim, M. F., Bahrin, E. K., Jenol, M. A., & Abd-Aziz, S. (2022). Pineapple peel as alternative substrate for bacterial nanocellulose production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03169-7
Lestari, P., Elfrida, N., Suryani, A., & Suryadi, Y. (2014). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 7(1), 75–80. https://doi.org/10.12816/0008218
Li, J., Chen, G., Zhang, R., Wu, H., Zeng, W., & Liang, Z. (2018). Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from kombucha tea. Biotechnology and Applied Biochemistry, 66(1), 108–118. https://doi.org/10.1002/bab.1703
Li, T., Shen, P., Liu, W., Liu, C., Liang, R., Yan, N., & Chen, J. (2014). Major polyphenolics in pineapple peels and their antioxidant interactions. International Journal of Food Properties, 17(8), 1805–1817. https://doi.org/10.1080/10942912.2012.732168
Liitiä, T., Maunu, S. L., & Hortling, B. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose, 10, 307–316. https://doi.org/10.1023/A:1027302526861
Liu, D., Meng, Q., & Hu, J. (2023). Bacterial nanocellulose hydrogel: A promising alternative material for the fabrication of engineered vascular grafts. Polymers, 15(18), 3812. https://doi.org/10.3390/polym15183812
Liu, Y., Dong, J., Liu, G., Yang, H., Liu, W., Wang, L., Kong, C., Zheng, D., Yang, J., Deng, L., & Wang, S. (2015). Co-digestion of tobacco waste with different agricultural biomass feedstocks and the inhibition of tobacco viruses by anaerobic digestion. Bioresource Technology, 189, 210–216. https://doi.org/10.1016/j.biortech.2015.04.003
Machado, R. T. A., Meneguin, A. B., Sábio, R. M., Franco, D. F., Antonio, S. G., Gutierrez, J., Tercjak, A., Berretta, A. A., Ribeiro, S. J. L., Lazarini, S. C., Lustri, W. R., & Barud, H. S. (2018). Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Industrial Crops and Products, 122, 637–646. https://doi.org/10.1016/j.indcrop.2018.06.048
Malaysia Palm Oil Council. (2023). Retrieved from http://www.mpoc.org.my/ on 4 November 2023.
Mathivanan, Y., Shahir, S., Ibrahim, Z., & Malek, N. A. (2024). Isolation and characterization of amorphous nanocellulose producing Comamonas terrae YSZ sp. from pineapple wastes. Polymer Bulletin. https://doi.org/10.1007/s00289-024-05433-4
Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., & Bahador, A. (2015). Effect of purification on nano microbial cellulose pellicle properties. Procedia Materials Science, 11, 206–211. https://doi.org/10.1016/j.mspro.2015.11.108
Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10), 2321. https://doi.org/10.3390/ijerph15102321
Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O., & Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), 639. https://doi.org/10.3390/ma10060639
Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257. https://doi.org/10.3390/nano7090257
Naomi, R., Hj Idrus, R., & Fauzi, M. B. (2020). Plant- vs. bacterial-derived cellulose for wound healing: A review. International Journal of Environmental Research and Public Health, 17(18), 6803. https://doi.org/10.3390/ijerph17186803
Nguyen, V. T., Flanagan, B., Mikkelsen, D., Ramirez, S., Rivas, L., Gidley, M. J., & Dykes, G. A. (2010). Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Carbohydrate Polymers, 80(2), 337–343. https://doi.org/10.1016/j.carbpol.2009.11.019
Onuoha, I. C., Chinonye, J. E., & Chibuikem, I. N. U. (2011). In vitro prevention of browning in plantain culture. OnLine Journal of Biological Sciences, 11(1), 13–17. https://doi.org/10.3844/ojbsci.2011.13.17
Palmonari, A., Cavallini, D., Sniffen, C., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244–6249. https://doi.org/10.3168/jds.2019-17644
Perna Manrique, O., Jaramillo Lanchero, R., & Vitola Garrido, L. (2018). Effect of the source of carbon and vitamin C present in tropical fruits, on the production of cellulose by. Indian Journal of Science and Technology, 11(22), 1–8. https://doi.org/10.17485/ijst/2018/v11i22/122280
Pham, T. T., & Tran, T. T. (2023). Evaluation of the crystallinity of bacterial cellulose produced from pineapple waste solution by using Acetobacter xylinum. ASEAN Engineering Journal, 13(2), 81–91. https://doi.org/10.11113/aej.v13.18868
R. R., Philip, E., Thomas, D., Madhavan, A., Sindhu, R., Binod, P., Varjani, S., Awasthi, M. K., & Pandey, A. (2021). Bacterial nanocellulose: Engineering, production, and applications. Bioengineered, 12, 11463. https://doi.org/10.1080/21655979.2021.2009753
Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2015/280784
Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49, 151–159. https://doi.org/10.1016/j.bjm.2017.12.012
Römling, U., & Galperin, M. Y. (2015). Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545–557. https://doi.org/10.1016/j.tim.2015.05.005
Roslan, A. M., Zahari, M. A., Hassan, M. A., & Shirai, Y. (2014). Investigation of oil palm frond properties for use as biomaterials and biofuels. Tropical Agriculture and Development, 58, 26–29. https://doi.org/10.11248/jsta.58.26
Ryngajłło, M., Jacek, P., Cielecka, I., Kalinowska, H., & Bielecki, S. (2019). Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Applied Microbiology and Biotechnology, 103(16), 6673–6688. https://doi.org/10.1007/s00253-019-09904-x
Sahari, N. S., Shahir, S., Ibrahim, Z., Hasmoni, S. H., & Altowayti, W. A. (2023). Bacterial nanocellulose and its application in heavy metals and dyes removal: A review. Environmental Science and Pollution Research, 30(51), 110069–110078. https://doi.org/10.1007/s11356-023-30067-w
Said Azmi, S. N., Samsu, Z. ’Asyiqin, Mohd Asnawi, A. S., Ariffin, H., & Syed Abdullah, S. S. (2023). The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5, 100327. https://doi.org/10.1016/j.carpta.2023.100327
Sijabat, E. K., Nuruddin, A., Aditiawati, P., & Sunendar Purwasasmita, B. (2020). Optimization on the synthesis of bacterial nanocellulose (BNC) from banana peel waste for water filter membrane applications. Materials Research Express, 7(5), 055010. https://doi.org/10.1088/2053-1591/ab8df7
Sukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11. https://doi.org/10.1186/s13068-018-1207-8
Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research. https://doi.org/10.1016/j.afres.2022.100050
Tabaii, M. J., & Emtiazi, G. (2016). Comparison of bacterial cellulose production among different strains and fermented media. Applied Food Biotechnology, 3, 35–41. https://doi.org/10.22037/afb.v3i1.10582
Valera, M. J., Torija, M. J., Mas, A., & Mateo, E. (2015). Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied Microbiology and Biotechnology, 99(3), 1349–1361. https://doi.org/10.1007/s00253-014-6198-1
Volova, T. G., Prudnikova, S. V., & Sukovatyi, A. G. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102, 7417–7428. https://doi.org/10.1007/s00253-018-9198-8
Walling, B., Bharali, P., Giridharan, B., Gogoi, B., Sorhie, V., Alemtoshi, & Mani, S. K. (2023). Bacterial nanocellulose: A novel nanostructured bio-adsorbent for green remediation technology. Acta Ecologica Sinica, 43(6), 946–967. https://doi.org/10.1016/j.chnaes.2023.02.002
Wang, J. H., He, H. Z., Wang, M. Z., Wang, S., Zhang, J., Wei, W., Xu, H. X., Lv, Z. M., & Shen, D. S. (2013). Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system. Bioresource Technology, 142, 445–453. https://doi.org/10.1016/j.biortech.2013.05.067
Wang, X., Liu, P., Wang, F., Fu, B., He, F., & Zhao, M. (2017). Influence of altitudinal and latitudinal variation on the composition and antioxidant activity of polyphenols in Nicotiana tabacum L. leaf. Emirates Journal of Food and Agriculture, 29, 359–366. https://doi.org/10.9755/ejfa.2016-09-1213
Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2011). Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 48(1), 54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006
Ye, J., Zheng, S., Zhang, Z., Yang, F., Ma, K., Feng, Y., Zheng, J., Mao, D., & Yang, X. (2019). Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274, 518–524. https://doi.org/10.1016/j.biortech.2018.12.028
Zacharof, M.-P. (2016). Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste and Biomass Valorization, 8(4), 1011–1025. https://doi.org/10.1007/s12649-016-9674-2
Zhang, S., Winestrand, S., Guo, X., Chen, L., Hong, F., & Jönsson, L. J. (2014). Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-62
Zhong, W., Zhu, C., Shu, M., Sun, K., Zhao, L., Wang, C., Ye, Z., & Chen, J. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101(18), 6935–6941. https://doi.org/10.1016/j.biortech.2010.03.142
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Yamunathevi Mathivanan, Shafinaz Shahir, Zaharah Ibrahim, Nik Ahmad Nizam Nik Malek
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.