Drying Kinetics and Quality Assessment of Noodles from Piper sarmentosum Roxb. (Kaduk) Leaves

Authors

  • Nur Ainani Zuyyin Jinin Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Mohammad Amil Zulhilmi Benjamin Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Mohd Azrie Awang ᵃFaculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia ᶜFood Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n4.3519

Keywords:

Piper sarmentosum, noodle, drying kinetic, phenolics, flavonoids, antioxidant.

Abstract

Piper sarmentosum Roxb., commonly known as ‘Kaduk’, is a plant that holds significant importance in various cultures for its culinary and medicinal properties in Southeast Asia. The drying behaviour of P. sarmentosum leaf-based noodles (PSLN) was represented by a thin-layer drying kinetic model. The PSLN underwent drying at various temperatures ranging from 40 to 80 °C, with an examination of six different drying kinetic models: Lewis, Page, Henderson-Pabis, two-term exponential, Logarithmic, and Midilli and Kucuk. Subsequently, the PSLN extract was analysed for total phenolic content (TPC) and total flavonoid content (TFC), as well as antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Evaluation of the appropriate drying kinetic model included the calculation of the coefficient of determination, as well as root mean square error, and chi-square values. Among the six models, the Midilli and Kucuk model emerged as the most accurate in describing the drying kinetics for PSLN, as indicated by its superior goodness of fit. The effective moisture diffusivity ranged from 1.22 ×  to 4.86 ×  , with an activation energy of 35.86 kJ/mol. PSLN dried at 50 °C exhibited higher TPC and TFC values of 121.60 ± 0.20 mg GAE/g dry extract and 2.05 ± 0.00 mg QE/g dry extract, respectively, compared to other temperatures. Furthermore, the DPPH activity in the PSLN exhibited an inhibition value of 92.49 ± 0.03%. Overall, drying PSLN products at 50 °C is recommended for retaining phenolics, flavonoids, and antioxidant activity.

References

Zhang, N., & Ma, G. (2016). Noodles, traditionally and today. Journal of Ethnic Foods, 3(3), 209–212. https://doi.org/10.1016/j.jef.2016.08.003

Fu, B. X. (2008). Asian noodles: History, classification, raw materials, and processing. Food Research International, 41(9), 888–902. https://doi.org/10.1016/j.foodres.2007.11.007

Abd Jalil, M. A., Shuid, A. N., & Muhammad, N. (2012). Role of medicinal plants and natural products on osteoporotic fracture healing. Evidence-Based Complementary and Alternative Medicine, 2012, 714512. https://doi.org/10.1155/2012/714512

Lee, J. H., Cho, S., Paik, H. D., Choi, C. W., Nam, K. T., Hwang, S. G., & Kim, S. K. (2014). Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some Thai edible plants as an alternative for antibiotics. Asian-Australasian Journal of Animal Sciences, 27(10), 1461–1468. https://doi.org/10.5713/ajas.2013.13629

Hussain, K., Ismail, Z., Sadikun, A., & Ibrahim, P. (2009). Antioxidant, anti-TB activities, phenolic and amide contents of standardised extracts of Piper sarmentosum Roxb. Natural Product Research, 23(3), 238–249. https://doi.org/10.1080/14786410801987597

Chanwitheesuk, A., Teerawutgulrag, A., & Rakariyatham, N. (2005). Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chemistry, 92(3), 491–497. https://doi.org/10.1016/j.foodchem.2004.07.035

Nouri, L., Nafchi, A. M., & Karim, A. A. (2015). Mechanical and sensory evaluation of noodles incorporated with betel leaf extract. International Journal of Food Engineering, 11(2), 221–227. https://doi.org/10.1515/ijfe-2014-0183

Utama-ang, N., Cheewinworasak, T., Simawonthamgul, N., & Samakradhamrongthai, R. S. (2020). Influence of garlic and pepper powder on physicochemical and sensory qualities of flavoured rice noodle. Scientific Reports, 10(1), 8538. https://doi.org/10.1038/s41598-020-65198-4

Benjamin, M. A. Z., Ng, S. Y., Saikim, F. H., & Rusdi, N. A. (2022). The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules, 27(19), 6458. https://doi.org/10.3390/molecules27196458

Guiné, R. P. F. (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. International Journal of Food Engineering, 4(2), 93–100. https://doi.org/10.18178/ijfe.4.2.93-100

Syah, H., Tambunan, A. H., Hartulistiyoso, E., & Manalu, L. P. (2020). Kinetika pengeringan lapisan tipis daun jati belanda. Jurnal Keteknikan Pertanian, 8(2), 53–62. https://doi.org/10.19028/jtep.08.2.53-62

Bonazzi, C., & Dumoulin, E. (2011). Quality changes in food materials as influenced by drying processes. In E. Tsotsas & A. S. Mujumdar (Eds.), Modern Drying Technology (Vol. 3, pp. 1–20). Hoboken, NJ, USA: Wiley‐VCH. https://doi.org/10.1002/9783527631667.ch1

Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653. https://doi.org/10.1016/j.foodchem.2009.04.066

Alfeo, V., Planeta, D., Velotto, S., Palmeri, R., & Todaro, A. (2021). Cherry tomato drying: Sun versus convective oven. Horticulturae, 7(3), 40. https://doi.org/10.3390/horticulturae7030040

Chibuzo, N. S., Osinachi, U. F., James, M. T., Chigozie, O. F., Dereje, B., & Irene, C. E. (2021). Technological advancements in the drying of fruits and vegetables: A review. African Journal of Food Science, 15(12), 367–379. https://doi.org/10.5897/AJFS2021.2113

Pratama, Y., Abduh, S. B. M., Legowo, A. M., Pramono, Y. B., & Albaarri, A. N. (2018). Optimum carrageenan concentration improved the physical properties of cabinet-dried yoghurt powder. IOP Conference Series: Earth and Environmental Science, 102(1), 012023. https://doi.org/10.1088/1755-1315/102/1/012023

Li, M., Ma, M., Zhu, K.-X., Guo, X.-N., & Zhou, H.-M. (2017). Delineating the physico-chemical, structural, and water characteristic changes during the deterioration of fresh noodles: Understanding the deterioration mechanisms of fresh noodles. Food Chemistry, 216, 374–381. https://doi.org/10.1016/j.foodchem.2016.08.059

Stephenus, F. N., Benjamin, M. A. Z., Anuar, A., & Awang, M. A. (2023). Effect of temperatures on drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of Phaleria macrocarpa (Scheff.) Boerl. (mahkota dewa) fruits. Foods, 12(15), 2859. https://doi.org/10.3390/foods12152859

Lewis, W. K. (1921). The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry, 13(5), 427–432. https://doi.org/10.1093/nq/175.27.477-a

Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers [Purdue University, West Lafayette, IN, USA]. Retrieved from http://dx.doi.org/10.1016/j.jaci.2012.05.050

Henderson, S. M., & Pabis, S. (1961). Grain drying theory. I. Temperature effect on drying coefficients. Journal of Agricultural Engineering Research, 6, 169–174.

Sharaf-Eldeen, Y., Blaisdell, J., & Hamdy, M. (1980). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261–1265. https://doi.org/10.13031/2013.34757

Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111–1122. https://doi.org/10.1016/S0196-8904(02)00099-7

Fakhrulddin, I. M., Ramaiya, S. D., Muta Harah, Z., Nur Leena Wong, W. S., Awang, M. A., & Ismail, N. I. M. (2022). Effects of temperature on drying kinetics and biochemical composition of Caulerpa lentillifera. Food Research, 6(5), 168–173. https://doi.org/10.26656/fr.2017.6(5).637

Chandra, P. K., & Singh, R. P. (1994). Applied Numerical Methods for Food and Agricultural Engineers (1st ed.). CRC Press.

Awang, M. A., Chua, L. S., Abdullah, L. C., & Pin, K. Y. (2021). Drying kinetics and optimization of quercetrin extraction from Melastoma malabathricum leaves. Chemical Engineering and Technology, 44(7), 1214–1220. https://doi.org/10.1002/ceat.202100007

Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063

Assefa, A. D., Choi, S., Lee, J. E., Sung, J. S., Hur, O. S., Ro, N. Y., Lee, H. S., Jang, S. W., & Rhee, J. H. (2019). Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages. BMC Chemistry, 13(3), 56. https://doi.org/10.1186/s13065-019-0570-2

Jinoni, D. A., Benjamin, M. A. Z., Mus, A. A., Goh, L. P. W., Rusdi, N. A., & Awang, M. A. (2024). Phaleria macrocarpa (Scheff.) Boerl. (mahkota dewa) seed essential oils: Extraction yield, volatile components, antibacterial, and antioxidant activities based on different solvents using Soxhlet extraction. Kuwait Journal of Science, 51, 100173. https://doi.org/10.1016/j.kjs.2023.100173

Awang, M. A., Benjamin, M. A. Z., Anuar, A., Ismail, M. F., Ramaiya, S. D., & Mohd Hashim, S. N. A. (2023). Dataset of gallic acid quantification and their antioxidant and anti-inflammatory activities of different solvent extractions from kacip fatimah (Labisia pumila Benth. & Hook. f.) leaves. Data in Brief, 51, 109644. https://doi.org/10.1016/j.dib.2023.109644

Ndukwu, M. C., Ibeh, M., Ekop, I., Abada, U., Etim, P., Bennamoun, L., Abam, F., Simo-Tagne, M., & Gupta, A. (2022). Analysis of the heat transfer coefficient, thermal effusivity and mathematical modelling of drying kinetics of a partitioned single pass low-cost solar drying of cocoyam chips with economic assessments. Energies, 15(12), 4457. https://doi.org/10.3390/en15124457

Bassey, E. J., Cheng, J.-H., & Sun, D.-W. (2022). Thermoultrasound and microwave-assisted freeze-thaw pretreatments for improving infrared drying and quality characteristics of red dragon fruit slices. Ultrasonics Sonochemistry, 91, 106225. https://doi.org/10.1016/j.ultsonch.2022.106225

Vega-Gálvez, A., Uribe, E., Gómez-Pérez, L. S., García, V., Mejias, N., & Pastén, A. (2022). Drying kinetic modeling and assessment of mineral content, antimicrobial activity, and potential α-glucosidase activity inhibition of a green seaweed (Ulva spp.) subjected to different drying methods. ACS Omega, 7(38), 34230–34238. https://doi.org/10.1021/acsomega.2c03617

Gasa, S., Sibanda, S., Workneh, T. S., Laing, M., & Kassim, A. (2022). Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer. Heliyon, 8(2), e08949. https://doi.org/10.1016/j.heliyon.2022.e08949

Yao, C., Qian, X.-D., Zhou, G.-F., Zhang, S.-W., Li, L.-Q., & Guo, Q.-S. (2019). A comprehensive analysis and comparison between vacuum and electric oven drying methods on Chinese saffron (Crocus sativus L.). Food Science and Biotechnology, 28(2), 355–364. https://doi.org/10.1007/s10068-018-0487-x

Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196

Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A review on thin-layer drying-curve equations. Drying Technology, 32(7), 757–773. https://doi.org/10.1080/07373937.2013.873047

Chasiotis, V., Tzempelikos, D., & Filios, A. (2021). Evaluation of a moisture diffusion model for analyzing the convective drying kinetics of Lavandula x allardii leaves. Computation, 9(12), 141. https://doi.org/10.3390/computation9120141

Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001

Nguyen, T. V. L., Nguyen, M. D., Nguyen, D. C., Bach, L. G., & Lam, T. D. (2019). Model for thin layer drying of lemongrass (Cymbopogon citratus) by hot air. Processes, 7(1), 21. https://doi.org/10.3390/pr7010021

Doymaz, I. (2010). Evaluation of mathematical models for prediction of thin-layer drying of banana slices. International Journal of Food Properties, 13(3), 486–497. https://doi.org/10.1080/10942910802650424

Sacilik, K. (2007). Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering, 79(1), 23–30. https://doi.org/10.1016/j.jfoodeng.2006.01.023

Rababah, T. M., Al-u’datt, M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common Mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150. https://doi.org/10.3965/j.ijabe.20150802.1496

Al-Hamdani, A., Jayasuriya, H., Pathare, P. B., & Al-Attabi, Z. (2022). Drying characteristics and quality analysis of medicinal herbs dried by an indirect solar dryer. Foods, 11(24), 4103. https://doi.org/10.3390/foods11244103

Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536–556. https://doi.org/10.1016/j.rser.2018.04.002

Ifrada, R. A. R., Martati, E., & Estiasih, T. (2022). Extraction optimization propolis in the functional drink of keprok batu 55 orange (Citrus reticulate Blanco). Jurnal Pangan Dan Agroindustri, 10(4), 224–234. https://doi.org/10.21776/ub.jpa.2022.010.04.5

Wang, L., Yang, B., Du, X., & Yi, C. (2008). Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chemistry, 108(2), 737–741. https://doi.org/10.1016/j.foodchem.2007.11.031

Ngamsuk, S., Huang, T.-C., & Hsu, J.-L. (2020). Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods, 8(9), 389. https://doi.org/10.3390/foods8090389

Sadek, N. F., & Hamidah, R. S. (2023). The stability of total phenolic and antioxidant activity during processing and cooking of sorghum-moringa substituted tapioca noodle. IOP Conference Series: Earth and Environmental Science, 1169(1), 012096. https://doi.org/10.1088/1755-1315/1169/1/012096

Ahmad, Z., Ilyas, M., Ameer, K., Khan, M. A., Waseem, M., Shah, F.-H., Mehmood, T., Rehman, M. A., & Mohamed Ahmed, I. A. (2022). The influence of fenugreek seed powder addition on the nutritional, antioxidant, and sensorial properties of value-added noodles. Journal of Food Quality, 2022, 4940343. https://doi.org/10.1155/2022/4940343

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096

Lu, Y., & Foo, L. Y. (2001). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75(2), 197–202

Downloads

Published

27-08-2024