Confidence Interval Estimating the Mean of Normal Distribution and Skewed Distribution

Authors

  • Siti Fairus Mokhtar ᵃSchool Quantitative Sciences, Universiti Utara Malaysia, Kedah, Malaysia ᵇSchool of Mathematical Sciences, College of Computing, Informatics, and Mathematics, Universiti Teknologi MARA, Kedah Branch, Kedah, Malaysia
  • Zahayu Md Yusof Centre for Testing, Measurement & Appraisal (CeTMA), Universiti Utara Malaysia, Kedah, Malaysia
  • Hasimah Sapiri School Quantitative Sciences, Universiti Utara Malaysia, Kedah, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n5.3435

Keywords:

Confidence intervals, bootstrapping, bootstrap-t, parameter estimations.

Abstract

The confidence interval is an important statistical estimator of population location and dispersion parameters. The purpose of this paper is to comprehend CI utilising various techniques. This includes classical CI, percentile bootstrap method, bootstrap-t and proposed bootstrap-t decile mean method. Distributions that are skewed and normal are used to generate data. The efficiency of the proposed method is evaluated on the basis of an extensive simulation study. The simulation findings show that the performance of the Student-t and three bootstrap approaches varies dramatically depending on sample size and skewness type. The coverage probability and length of the proposed confidence interval are compared with certain existing and widely used confidence intervals. For illustrative purposes, two real-life data sets are analysed, which, to some extent, support the simulation study conclusions. This paper's findings will be useful to a variety of researchers with practical experience in the fields of science and social sciences.

References

Abu-Shawiesh, M. O. A., et al. (2018). Confidence intervals based on absolute deviation for population mean of a positively skewed distribution. International Journal of Computational and Theoretical Statistics, 5(1), 1–13. https://doi.org/10.12785/ijcts/050101

Abu-Shawiesh, M. O. A., Sinsomboonthong, J., & Kibria, B. M. G. (2022). A modified robust confidence interval for the population mean of distribution based on deciles. Statistics in Transition New Series, 23(1), 109–128. https://doi.org/10.21307/stattrans-2022-007

Abu-Shawiesh, M. O. A., Saghir, A. (2019). Robust confidence intervals for the population mean: Alternatives to the Student-t confidence interval. Journal of Modern Applied Statistical Methods, 18(1), 1–21. https://doi.org/10.22237/JMASM/1556669160

Ahmad, M. F., Sapiri, H., Misiran Bakun, M., Hashim, Z., & Abdul Halim, T. F. (2019). A system dynamics model of Malaysia house pricing. International Journal of Engineering and Advanced Technology, 8(6 Special Issue 3), 57–64. https://doi.org/10.35940/ijeat.F1010.0986S319

Barker, N. (2005). A practical introduction to the bootstrap using the SAS system. Proceedings of the Pharmaceutical Users Software Exchange Conference, Paper PK02. http://www.lexjansen.com/phuse/2005/pk/pk02.pdf

Berrar, D. (2019). Introduction to the non-parametric bootstrap. April, 0–15. https://doi.org/10.1016/B978-0-12-809633-8

Boos, D. D., & Hughes-Oliver, J. M. (2000). How large does n have to be for Z and t intervals? American Statistician, 54(2), 121–128. https://doi.org/10.1080/00031305.2000.10474524

Chankham, W., Niwitpong, S. A., & Niwitpong, S. (2022, December). Confidence intervals for ratio of coefficients of variation of inverse Gaussian distribution. In Proceedings of the 2022 International Conference on Big Data, IoT, and Cloud Computing (pp. 1–5).

David, H. A. (1998). Early sample measures of variability. Statistical Science, 13(4), 368–377. https://doi.org/10.1214/ss/1028905831

Desharnais, B., Camirand-Lemyre, F., Mireault, P., & Skinner, C. D. (2015). Determination of confidence intervals in non-normal data: Application of the bootstrap to cocaine concentration in femoral blood. Journal of Analytical Toxicology, 39(2), 113–117. https://doi.org/10.1093/jat/bku127

Efron, B. (1979). Bootstrap method: Another look at jackknife. In Breakthroughs in Statistics (Vol. 7, pp. 569–593).

Flowers-Cano, R. S., Ortiz-Gómez, R., León-Jiménez, J. E., Rivera, R. L., & Cruz, L. A. P. (2018). Comparison of bootstrap confidence intervals using Monte Carlo simulations. Water (Switzerland), 10(2), 1–21. https://doi.org/10.3390/w10020166

Hoyle, S. D., & Cameron, D. S. (2003). Confidence intervals on catch estimates from a recreational fishing survey: A comparison of bootstrap methods. Fisheries Management and Ecology, 10(2), 97–108. https://doi.org/10.1046/j.1365-2400.2003.00321.x

Islam, K., & Shapla, T. J. (2018). On performance of confidence interval estimate of mean for skewed populations: Evidence from examples and simulations. Mathematical Theory and Modeling, 8(3), 41–51.

Kyselý, J. (2010). Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data. Theoretical and Applied Climatology, 101(3), 345–361. https://doi.org/10.1007/s00704-009-0190-1

Lee, K. M., Lee, M. H., Lee, J. S., & Lee, J. Y. (2020). Uncertainty analysis of greenhouse gas (GHG) emissions simulated by the parametric Monte Carlo simulation and nonparametric bootstrap method. Energies, 13(18). https://doi.org/10.3390/en13184965

Moslim, N. H., Zubairi, Y. Z., Hussin, A. G., Hassan, S. F., & Mokhtar, N. A. (2019). A comparison of asymptotic and bootstrapping approaches in constructing confidence intervals of the concentration parameter in von Mises distribution. Sains Malaysiana, 48(5), 1151–1156.

Niwitpong, S., & Kirdwichai, P. (2008). Adjusted Bonett confidence interval for standard deviation of non-normal distributions. Thailand Statistician, 6(January), 1–16.

Omar, M., & Abu, A. (2011). A simulation study on some confidence intervals for the population standard deviation. Sort, 35(2), 83–102.

Pek, J., Wong, A. C. M., & Wong, O. C. Y. (2017). Confidence intervals for the mean of non-normal distribution: Transform or not to transform. Open Journal of Statistics, 7(3), 405–421. https://doi.org/10.4236/ojs.2017.73029

Shi, W., & Golam Kibria, B. M. (2007). On some confidence intervals for estimating the mean of a skewed population. International Journal of Mathematical Education in Science and Technology, 38(3), 412–421. https://doi.org/10.1080/00207390601116086

Sinsomboonthong, J., Abu-Shawiesh, M. O. A., & Kibria, B. M. G. (2020). Performance of robust confidence intervals for estimating population mean under both non-normality and in presence of outliers. Advances in Science, Technology and Engineering Systems, 5(3), 442–449. https://doi.org/10.25046/aj050355

Student. (1908). The probable error of a mean (pp. 1–25).

Waguespack, D., Krishnamoorthy, K., & Lee, M. (2020). Tests and confidence intervals for the mean of a zero-inflated Poisson distribution. American Journal of Mathematical and Management Sciences, 39(4), 383–390. https://doi.org/10.1080/01966324.2020.1777914

Wang, F.-K. (2001). Non-normal data. Quality and Reliability Engineering International, 267(259), 257–267. https://doi.org/10.1002/qre400

Wilcox, R. R. (2021). A note on computing a confidence interval for the mean. Communications in Statistics: Simulation and Computation, 0(0), 1–3. https://doi.org/10.1080/03610918.2021.2011926

Zhao, S., Yang, Z., Musa, S. S., Ran, J., Chong, M. K. C., Javanbakht, M., He, D., & Wang, M. H. (2021). Attach importance of the bootstrap t-test against Student’s t-test in clinical epidemiology: A demonstrative comparison using COVID-19 as an example. Epidemiology and Infection, 149. https://doi.org/10.1017/S0950268821001047

Zhou, X. H., & Dinh, P. (2005). Nonparametric confidence intervals for the one- and two-sample problems. Biostatistics, 6(2), 187–200. https://doi.org/10.1093/biostatistics/kxi002

Downloads

Published

15-10-2024