Theoretical Study on the Disparate Spatial Arrangement of 3’,4’,5,7-tetrahydroxy-3-flavene Towards Jack Bean Urease Enzyme Active Site

Authors

  • Mohd Hafiz Yaakob Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Zaidi Ab Ghani Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Shukor Sanim Mohd Fauzi College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Norlin Shuhaime Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Sharifah Zati Hanani Syed Zuber Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
  • Sin Ang Lee Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n4.3403

Keywords:

Urease, flavonoids, inhibitor, semiempirical, GFN2-xTB, topology.

Abstract

Urease enzyme plays crucial role in the hydrolysis of urea. Excessive hydrolysis of urea can have significant impacts on the environment. In recent years, there has been growing interest in identifying natural compounds that can inhibit urease activity. Flavonoids, phytochemical compounds present in plants, have shown promising potential as urease inhibitors. Studies have revealed that certain flavonoids, such as 3’,4’,5,7-tetrahydroxy-3-flavene, abbreviated as H4FLA for convenient, exhibit potent inhibition of urease, surpassing the efficacy of well-known synthetic inhibitors. In the present study, we report quantum mechanical calculations that mainly investigate the interaction of H4FLA towards urease at disparate spatial arrangement. It was found that the most favourable position between H4FLA and active site of urease has interaction energy of -3.80 eV. Topology analysis revealed that there is no typical covalent bond found between atoms involved in the interaction. Only weak interactions were detected. The hydroxyl groups with highest (negative) local potential throughout the structure, contribute mainly to the formation of non-covalent interaction with the nickel centers, indicating their potential involvement in the inhibitory activity of flavonoids against urease.

References

Karplus, P. A., Pearson, M. A., & Hausinger, R. P. (1997). 70 years of crystalline urease: What have we learned? Accounts of Chemical Research, 30(7), 330–337.

Jabri, E., Carr, M. B., Hausinger, R. P., & Karplus, P. A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268(5210), 998–1004.

Kappaun, K., Piovesan, A. R., Carlini, C. R., & Ligabue-Braun, R. (2018). Ureases: Historical aspects, catalytic, and non-catalytic properties – A review. Journal of Advanced Research, 13, 3–17.

Krajewska, B. (2009). Ureases I. Functional, catalytic, and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-4), 9–21.

Estiu, G., & Merz, K. M. (2004). The hydrolysis of urea and the proficiency of urease. Journal of the American Chemical Society, 126(22), 6932–6944.

Amtul, Z., Atta ur, R., Siddiqui, R. A., & Choudhary, M. I. (2002). Chemistry and mechanism of urease inhibition. Current Medicinal Chemistry, 9(12), 1323–1348.

Domínguez, M. J., Sanmartín, C., Font, M., Palop, J. A., San Francisco, S., Urrutia, O., Houdusse, F., & García-Mina, J. M. (2008). Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors. Journal of Agricultural and Food Chemistry, 56(11), 3721–3731.

Daneshfar, A., Matsuura, T., Emadzadeh, D., Pahlevani, Z., & Ismail, A. F. (2015). Urease-carrying electrospun polyacrylonitrile mat for urea hydrolysis. Reactive and Functional Polymers, 87, 37–45.

Russell, A. J., Erbeldinger, M., DeFrank, J. J., Kaar, J., & Drevon, G. (2002). Catalytic buffers enable positive-response inhibition-based sensing of nerve agents. Biotechnology and Bioengineering, 77(4), 352–357.

Chu, Q., Xue, L., Cheng, Y., Liu, Y., Feng, Y., Yu, S., Meng, L., Pan, G., Hou, P., Duan, J., & Yang, L. (2020). Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Science of The Total Environment, 717, 137127.

Chen, A., Lei, B., Hu, W., Lu, Y., Mao, Y., Duan, Z., & Shi, Z. (2015). Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China. Nutrient Cycling in Agroecosystems, 101(1), 139–152.

Qi, S., Ding, J., Yang, S., Jiang, Z., & Xu, Y. (2022). Impact of biochar application on ammonia volatilization from paddy fields under controlled irrigation. Sustainability, 14(3), 1337.

Zhang, P., Wu, T., Cao, H., Zhang, J., James, T. D., & Sun, X. (2023). Fluorometric detection of volatile amines using an indanonalkene platform. Organic Chemistry Frontiers, 10(8), 1393–1398.

Gu, B., Sutton, M. A., Chang, S. X., Ge, Y., & Chang, J. (2014). Agricultural ammonia emissions contribute to China’s urban air pollution. Frontiers in Ecology and the Environment, 12(5), 265–266.

Piwowar, A. (2020). Farming practices for reducing ammonia emissions in Polish agriculture. Atmosphere, 11(12), 1353.

Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., & Cady-Pereira, K. (2019). New bidirectional ammonia flux model in an air quality model coupled with an agricultural model. Journal of Advances in Modeling Earth Systems, 11(10), 2934–2957.

Sun, C., Hong, S., Cai, G., Zhang, Y., Kan, H., Zhao, Z., Deng, F., Zhao, B., Zeng, X., Sun, Y., Qian, H., Liu, W., Mo, J., Guo, J., Zheng, X., Su, C., Zou, Z., Li, H., & Huang, C. (2021). Indoor exposure levels of ammonia in residences, schools, and offices in China from 1980 to 2019: A systematic review. Indoor Air, 31(6), 1691–1706.

Phillips, C. J. C., Pines, M. K., Latter, M., Muller, T., Petherick, J. C., Norman, S. T., & Gaughan, J. B. (2010). The physiological and behavioral responses of steers to gaseous ammonia in simulated long-distance transport by ship. Journal of Animal Science, 88(11), 3579–3589.

Cantarella, H., Otto, R., Soares, J. R., & Silva, A. G. D. (2018). Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research, 13, 19–27.

San Francisco, S., Urrutia, O., Martin, V., Peristeropoulos, A., & Garcia-Mina, J. M. (2011). Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. Journal of the Science of Food and Agriculture, 91(8), 1569–1575.

Patra, A. K., & Aschenbach, J. R. (2018). Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. Journal of Advanced Research, 13, 39–50.

Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1-3), 179–196.

Gao, J., Li, L., Hu, Z., Yue, H., Zhang, R., & Xiong, Z. (2016). Effect of ammonia stress on nitrogen metabolism of Ceratophyllum demersum. Environmental Toxicology and Chemistry, 35(1), 205–211.

Awllia, J. A. J., Al-Ghamdi, M., Huwait, E., Javaid, S., Atia tul, W., Rasheed, S., & Choudhary, M. I. (2016). Flavonoids as natural inhibitors of Jack bean urease enzyme. Letters in Drug Design & Discovery, 13(3), 243–249.

Liu, H., Wang, Y., Lv, M., Luo, Y., Liu, B. M., Huang, Y., Wang, M., & Wang, J. (2020). Flavonoid analogues as urease inhibitors: Synthesis, biological evaluation, molecular docking studies, and in-silico ADME evaluation. Bioorganic Chemistry, 105, 1–9.

Xiao, Z. P., Peng, Z. Y., Dong, J. J., He, J., Ouyang, H., Feng, Y. T., Lu, C. L., Lin, W. Q., Wang, J. X., & Xiang, Y. P. (2013). Synthesis, structure–activity relationship analysis, and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 63, 685–695.

Kataria, R., & Khatkar, A. (2019). Molecular docking, synthesis, kinetics study, structure–activity relationship, and ADMET analysis of morin analogues as Helicobacter pylori urease inhibitors. BMC Chemistry, 13, 45.

Saito, T., & Takano, Y. (2022). QM/MM molecular dynamics simulations revealed catalytic mechanism of urease. The Journal of Physical Chemistry B, 126(10), 2087–2097.

Mazzei, L., Musiani, F., & Ciurli, S. (2020). The structure-based reaction mechanism of urease, a nickel-dependent enzyme: Tale of a long debate. Journal of Biological Inorganic Chemistry, 25(5), 829–845.

Lee, J. K., Park, H. J., Cha, S. J., Kwon, S. J., & Park, J. H. (2021). Effect of pyroligneous acid on soil urease, amidase, and nitrogen use efficiency by Chinese cabbage (Brassica campestris var. Pekinensis). Environmental Pollution, 291, 118132.

Estiu, G., & Merz, K. M. (2006). Catalyzed decomposition of urea: Molecular dynamics simulations of the binding of urea to urease. Biochemistry, 45(14), 4429–4443.

Carter, E. L., Flugga, N., Boer, J. L., Mulrooney, S. B., & Hausinger, R. P. (2009). Interplay of metal ions and urease. Metallomics, 1(4), 207–214.

Mazzei, L., Cianci, M., Musiani, F., & Ciurli, S. (2016). Inactivation of urease by 1,4-benzoquinone: Chemistry at the protein surface. Dalton Transactions, 45(16), 5455–5459.

Hanif, M., Nawaz, M. A. H., Babak, M. V., Iqbal, J., Roller, A., Keppler, B. K., & Hartinger, C. G. (2014). Ruthenium(II)(η^6-arene) complexes of thiourea derivatives: Synthesis, characterization, and urease inhibition. Molecules, 19(6), 8080–8092.

Liu, M.-L., Li, W.-Y., Fang, H.-L., Ye, Y.-X., Li, S.-Y., Song, W.-Q., Xiao, Z.-P., Ouyang, H., & Zhu, H.-L. (2022). Synthesis and biological evaluation of dithiobisacetamides as novel urease inhibitors. ChemMedChem, 17(11), e202100618.

Rasmussen, M. H., & Jensen, J. H. (2020). Fast and automatic estimation of transition state structures using tight binding quantum chemical calculations. PeerJ Physical Chemistry, 2, e15.

Bannwarth, C., Caldeweyher, E., Ehlert, S., Hansen, A., Pracht, P., Seibert, J., Spicher, S., & Grimme, S. (2021). Extended tight-binding quantum chemistry methods. WIREs Computational Molecular Science, 11(5), e1493.

Bannwarth, C., Ehlert, S., & Grimme, S. (2019). GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of Chemical Theory and Computation, 15(3), 1652–1671.

Schmitz, S., Seibert, J., Ostermeir, K., Hansen, A., Göller, A. H., & Grimme, S. (2020). Quantum chemical calculation of molecular and periodic peptide and protein structures. The Journal of Physical Chemistry B, 124(15), 3636–3646.

Menzel, J. P., Kloppenburg, M., Belić, J., de Groot, H. J. M., Visscher, L., & Buda, F. (2021). Efficient workflow for the investigation of the catalytic cycle of water oxidation catalysts: Combining GFN-xTB and density functional theory. Journal of Computational Chemistry, 42(21), 1885–1894.

Nurhuda, M., Perry, C. C., & Addicoat, M. A. (2022). Performance of GFN1-xTB for periodic optimization of metal-organic frameworks. Physical Chemistry Chemical Physics, 24(19), 10906–10914.

Neugebauer, H., Bohle, F., Bursch, M., Hansen, A., & Grimme, S. (2020). Benchmark study of electrochemical redox potentials calculated with semiempirical and DFT methods. The Journal of Physical Chemistry A, 124(39), 7166–7176.

Follmer, C., Barcellos, G. B. S., Zingali, R. B., Machado, O. L. T., Alves, E. W., Barja-Fidalgo, C., Guimarães, J. A., & Carlini, C. R. (2001). Canatoxin, a toxic protein from jack beans (Canavalia ensiformis), is a variant form of urease (EC 3.5.1.5): Biological effects of urease independent of its ureolytic activity. Biochemical Journal, 360(1), 217–224.

Kleywegt, G. J., & Alwyn Jones, T. (1997). Model building and refinement practice. In Methods in Enzymology (pp. 208–230). Academic Press.

Balasubramanian, A., & Ponnuraj, K. (2010). Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Journal of Molecular Biology, 400(2), 274–283.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.

Groom, C. R., Bruno, I. J., Lightfoot, M. P., & Ward, S. C. (2016). The Cambridge Structural Database. Acta Crystallographica Section B, 72(2), 171–179.

Mazinani, M., Behbehani, G. R., Gheibi, N., & Farasat, A. (2020). Study of jack bean urease interaction with luteolin by the extended solvation model and docking simulation. AIMS Biophysics, 7(4), 429–435.

Klimczyk, M., Siczek, A., & Schimmelpfennig, L. (2021). Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Science of the Total Environment, 771, 1–13.

Carlsson, H., & Nordlander, E. (2010). Computational modeling of the mechanism of urease. Bioinorganic Chemistry and Applications, 2010, 1–8.

Mazzei, L., Cianci, M., Contaldo, U., Musiani, F., & Ciurli, S. (2017). Urease inhibition in the presence of N-(n-butyl)thiophosphoric triamide, a suicide substrate: Structure and kinetics. Biochemistry, 56(27), 5391–5404.

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Methods in Molecular Biology (Vol. 1263, pp. 243–250). Clifton, N.J.: Humana Press.

Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592.

Azman, M. H. D., Sin, A. L., Zuber, S. Z. H. S., Yaakob, M. H., & Ghani, Z. A. (2021). Structural and electronic properties of NBPT inhibitor attached to urease. Journal of Physics: Conference Series, 1874, 012026.

Espinosa, E., Alkorta, I., Elguero, J., & Molins, E. (2002). From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. The Journal of Chemical Physics, 117(12), 5529–5542.

Wan, L.-H., Jiang, X.-L., Liu, Y.-M., Hu, J.-J., Liang, J., & Liao, X. (2016). Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism. Analytical and Bioanalytical Chemistry, 408(8), 2275–2283.

Mohamed Yusof, N. I. S., Abdullah, Z. L., Othman, N., & Mohd Fauzi, F. (2022). Structure–activity relationship analysis of flavonoids and their inhibitory activity against BACE1 enzyme toward a better therapy for Alzheimer’s disease. Frontiers in Chemistry, 10, 874615.

Chaudhry, F., Naureen, S., Aslam, M., Al-Rashida, M., Rahman, J., Huma, R., Fatima, J., Khan, M., Munawar, M. A., & Ain Khan, M. (2020). Identification of imidazolylpyrazole ligands as potent urease inhibitors: Synthesis, antiurease activity, and in silico docking studies. ChemistrySelect, 5(46), 11817–11821.

Mahmood, S.-U., Nazir, Y., Saeed, A., Abbas, Q., & Ashraf, Z. (2020). Synthesis, biological evaluation, and molecular docking studies of novel coumarinylthiazolyl imino-thiazolidinone hybrids as potent urease inhibitors. ChemistrySelect, 5(19), 5387–5390.

Suárez, D., Díaz, N., & Merz, K. M. (2003). Ureases: Quantum chemical calculations on cluster models. Journal of the American Chemical Society, 125(49), 15324–15337.

Downloads

Published

27-08-2024