Multi-epitope Vaccine Design against Grouper Iridovirus (GIV) Using Immuno-bioinformatics Approach

Authors

  • Nur Farahin Ishak Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan-Atirah Azemin School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
  • Chen Fei Low Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Nor Azlan Nor Muhammad Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Mohd Shahir Shamsir Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Aisyah Razali ᵃFaculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia ᵉBiological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n4.3391

Keywords:

Iridovirus, immune-bioinformatics, multi-epitope, vaccine, molecular dynamics simulations.

Abstract

Grouper Iridovirus (GIV) infection induced cell death in grouper spleen cells and caused serious systemic diseases with more than 90% mortality. Therefore, effective strategies are critically needed to prevent economic losses and maintain the sustainability of grouper aquaculture. Using immuno-bioinformatics, this study aimed to create a multi-epitope vaccine (MEV) that would be effective against GIV. The GIV major capsid protein sequences were retrieved from the NCBI proteome database. Out of 284 epitopes, 17 CTL, 12 HTL, and 10 B-cell epitopes were predicted to be antigenic, non-allergenic, and non-toxic. 10 highly antigenic and overlapping epitopes were shortlisted. To generate full-length epitope vaccine candidates, the selected antigenic epitopes were fused with linkers and adjuvants. Four sets of different linker combinations (no linker, GGS, EAAK, GGGS, GPGPG, KK, and AAY) were tested and compared for their antigenicity, allergenicity, and toxicity using several servers. Molecular dynamics simulations with GROMACS were used on the modelled 3D structures to examine their stability. The results of vaccine candidate sequences screening and MD simulation predicted that the structure with GGS linker is relatively stable with a high antigenic index, non-allergenic, and non-toxic. The designed MEV in the present study could be a potential candidate for further vaccine production process against GIV.

References

Yu, Q., Xu, S., Zhang, J., Wang, Y., & Liu, Y. (2020). Selection and characterization of aptamers for specific detection of iridovirus disease in cultured hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Chinese Journal of Analytical Chemistry, 48(5), 650–661. https://doi.org/10.1016/S1872-2040(20)60021-4

Food and Agriculture Organization. (2022). The state of world fisheries and aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en

Ou-yang, Z., Wu, H., Liu, Y., Chen, X., & Yang, Y. (2012). Selection and identification of Singapore grouper iridovirus vaccine candidate antigens using bioinformatics and DNA vaccination. Veterinary Immunology and Immunopathology, 149(1–2), 38–45. https://doi.org/10.1016/j.vetimm.2012.05.021

Wei, J., Huang, Y., Zhu, W., Li, C., Huang, X., & Qin, Q. (2019). Isolation and identification of Singapore grouper iridovirus Hainan strain (SGIV-HN) in China. Archives of Virology, 164(7), 1869–1872. https://doi.org/10.1007/S00705-019-04268-Z

Hazeri, M., Hj, H., Daud, M., Abba, Y., & Rahman Omar, A. (2017). Molecular characterization of grouper iridovirus isolates from Peninsular Malaysia. Retrieved from https://sg.idtdna.com/site

Razak, A. A., Ransangan, J., & Sade, A. (2014). First report of Megalocytivirus (Iridoviridae) in grouper culture in Sabah, Malaysia. Retrieved from http://www.ijcmas.com

Matsuyama, T., Saito, M., Shimizu, T., & Nakai, T. (2018). Antibody profiling using a recombinant protein–based multiplex ELISA array accelerates recombinant vaccine development: Case study on red sea bream iridovirus as a reverse vaccinology model. Vaccine, 36(19), 2643–2649. https://doi.org/10.1016/j.vaccine.2018.03.059

Krishnan, R., Kim, J. O., Kim, J. O., Qadiri, S. S. N., Kim, S. J., & Oh, M. J. (2019). Immunoglobulin-like cell adhesion molecules, nectins - Characterization, functional prediction and expression profiling from seven-band grouper, Hyporthodus septemfasciatus. Aquaculture, 506, 387–393. https://doi.org/10.1016/j.aquaculture.2019.04.009

Huang, S. M., Kuo, S. T., Kuo, H. C., & Chang, S. K. (2018). Assessment of fish iridoviruses using a novel cell line GS-1, derived from the spleen of orange-spotted grouper Epinephelus coioides (Hamilton) and susceptible to ranavirus and megalocytivirus. Journal of Veterinary Medical Science, 80(11), 1766–1774. https://doi.org/10.1292/jvms.18-0078

Amanu, S., Sulistiyono, D., & Suardana, I. (2016). Detection of fish disease caused by iridovirus on grouper (Epinephelus sp.) and pomfret star (Trachinotus blochii) with co-agglutination method in Tanjungpinang, Indonesia. Journal of Agricultural Science and Technology B, 6, 121–128. https://doi.org/10.17265/2161-6264/2016.02.007

Ransangan, J., Razak, A. A., & Sade, A. (2014). First report of Megalocytivirus (Iridoviridae) in grouper culture in Sabah, Malaysia. Probiotic properties of fish intestinal bacteria to fish growth, survival, and immunity with and without bacterial infection. Retrieved from https://www.researchgate.net/publication/264556498

Qin, Q., Chang, S., Ngoh-Lim, S., Gibson-Kueh, S., Shi, C., & Lam, T. (2003). Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina. Diseases of Aquatic Organisms, 53, 1–9. https://doi.org/10.3354/dao053001

Kurniasih, I., Amanu, S., & Ismayasari, R. (2019, April). Studies on iridovirus infection among grouper fish (Epinephelus sp.) cultured in Seribu Islands, Indonesia. In AIP Conference Proceedings (Vol. 2114, No. 1, p. 020037). American Institute of Physics Inc. https://doi.org/10.1063/1.5098416

Chao, C., Chen, C., Lai, Y., Lin, C., & Huang, H. (2004). Histological, ultrastructural, and in situ hybridization study on enlarged cells in grouper Epinephelus hybrids infected by grouper iridovirus in Taiwan (TGIV). Diseases of Aquatic Organisms, 58, 127–142. https://doi.org/10.3354/dao058127

Murali, S., Wu, M. F., Guo, I. C., Chen, S. C., Yang, H. W., & Chang, C. Y. (2002). Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases, 25(2), 91–100. https://doi.org/10.1046/j.1365-2761.2002.00343.x

Peng, C., Li, X., Zhao, J., Zhou, S., & Wu, L. (2015). Susceptibility of farmed juvenile giant grouper Epinephelus lanceolatus to a newly isolated grouper iridovirus (genus Ranavirus). Veterinary Microbiology, 177(3–4), 270–279. https://doi.org/10.1016/j.vetmic.2015.03.017

Xiao, H., Liu, Y., Zhang, X., Li, Z., & Wang, Y. (2019). Isolation and characterization of a ranavirus associated with disease outbreaks in cultured hybrid grouper (♀ Tiger Grouper Epinephelus fuscoguttatus × ♂ Giant Grouper E. lanceolatus) in Guangxi, China. Journal of Aquatic Animal Health, 31(4), 364–370. https://doi.org/10.1002/aah.10090

Davison, A. J. (2017, January 1). Introduction to “ICTV virus taxonomy profiles”. Journal of General Virology. Microbiology Society. https://doi.org/10.1099/jgv.0.000686

Huang, X., Wang, Y., Zhang, Y., & Lee, J. (2013). Characterization of an envelope gene VP19 from Singapore grouper iridovirus. Virology Journal, 10(1), 354. Retrieved from http://www.virologyj.com/content/10/1/354

Mahardika, K., Muzaki, A., & Suwirya, K. (2009). Pathogenicity of grouper sleepy disease iridovirus (GSDIV: Megalocytivirus, family Iridoviridae) to coral trout grouper Plectrophomus leopardus. [No publication details available]

Sukenda, S., Gardenia, L., Zairin, M., Lusiastuti, A., & Alimudin, A. (2020). Identification of giant gourami iridovirus (GGIV): A new infectious spleen and kidney necrosis virus (ISKNV) from natural outbreak in cultured Osphronemus goramy. Aquaculture International, 28(3), 1069–1082. https://doi.org/10.1007/s10499-020-00513-4

Li, P., Liu, S., Li, H., & Zhou, H. (2022). Antiviral activities of green tea components against grouper iridovirus infection in vitro and in vivo. Viruses, 14(6), 1227. https://doi.org/10.3390/v14061227

Chuang, H. C., Chu, T. W., Cheng, A. C., Chen, N. Y., & Lai, Y. S. (2022). Iridovirus isolated from marine giant sea perch causes infection in freshwater ornamental fish. Aquaculture, 548, 737588. https://doi.org/10.1016/j.aquaculture.2021.737588

Qin, P., Munang'andu, H. M., Xu, C., & Xie, J. (2023, June 1). Megalocytivirus and other members of the family Iridoviridae in finfish: A review of the etiology, epidemiology, diagnosis, prevention and control. Viruses. MDPI. https://doi.org/10.3390/v15061359

Andreoni, F., Amagliani, G., & Magnani, M. (2016). Selection of vaccine candidates for fish pasteurellosis using reverse vaccinology and an in vitro screening approach. In Methods in Molecular Biology (Vol. 1404, pp. 181–192). Springer. https://doi.org/10.1007/978-1-4939-3389-1_12/COVER

Mokhtar, D. M., Zaccone, G., Alesci, A., Kuciel, M., Hussein, M. T., & Sayed, R. K. A. (2023). Main components of fish immunity: An overview of the fish immune system. Fishes, 8(2), 93. https://doi.org/10.3390/fishes8020093

Vargas, D., Rojas, F., Vargas, M., & Oyarzún, C. (2021). The analysis of live-attenuated Piscirickettsia salmonis vaccine reveals the short-term upregulation of innate and adaptive immune genes in Atlantic salmon (Salmo salar): An in situ open-sea cages study. Microorganisms, 9(4), 703. https://doi.org/10.3390/microorganisms9040703

Riera Romo, M., Pérez-Martínez, D., & Castillo Ferrer, C. (2016). Innate immunity in vertebrates: An overview. Immunology, 148(2), 125–139. https://doi.org/10.1111/imm.12597

Kordon, A. O., Pinchuk, L., & Karsi, A. (2021). Adaptive immune system in fish. Central Fisheries Research Institute. https://doi.org/10.4194/TRJFAS20235

Kordon, A. O., Pinchuk, L., & Karsi, A. (2022). Adaptive immune system in fish. Turkish Journal of Fisheries and Aquatic Sciences, 22(4), 20235. https://doi.org/10.4194/TRJFAS20235

Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569

Mondal, H., & Thomas, J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquaculture Research, 53(8), 1567–1584. https://doi.org/10.1007/s10499-022-00884-w

Sanjida, S., Mou, M. J., Islam, S. I., & Sarower-E-Mahfuj, M. (2022). An in-silico approach for identification of potential natural antiviral drug candidates against Erythrocytic necrosis virus (Iridovirus) by targeting Major capsid protein: A quantum mechanics calculations approach. International Journal of Life Sciences and Biotechnology, 5(3), 294–315. https://doi.org/10.38001/ijlsb.1074392

Yu, Q., Liu, W., Liu, X., Zhang, Z., & Wang, H. (2019). Identification of Major Capsid Protein as a potential biomarker of Grouper Iridovirus-infected cells using aptamers selected by SELEX. Frontiers in Microbiology, 10, 2684. https://doi.org/10.3389/fmicb.2019.02684

Ranjbar, M., Barati, M., & Shaterzadeh, Y. (2019). Novel applications of immuno-bioinformatics in vaccine and bio-product developments at research institutes. Retrieved from http://www.rvsri.ir

Jalal, K., Arif, M., & Khan, M. (2022). Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach. Scientific Reports, 12(1), 16835. https://doi.org/10.1038/s41598-021-03988-0

Parihar, R., Malviya, R., & Khan, R. (2022). Immunoinformatics and reverse vaccinomic approaches for effective design. In Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV2 Infection: Revolutionary Strategies to Combat Pandemics (pp. 357–378). Elsevier. https://doi.org/10.1016/B978-0-323-91172-6.00004-2

Tsai, C.-T., Ting, J.-W., Wu, M.-H., Wu, M.-F., Guo, I.-C., & Chang, C.-Y. (2005). Complete genome sequence of the Grouper Iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology, 79(4), 2010–2023. https://doi.org/10.1128/JVI.79.4.2010-2023.2005

Schoch, C. L., Seifert, K. A., Huhndorf, S. M., Robert, V., Spouge, J. L., & Levesque, C. A. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020. https://doi.org/10.1093/database/baaa062

Vita, R., Overton, J. A., Greenbaum, J. A., & Sidney, J. (2018). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006

Reche, P. A., Glutting, J. P., Zhang, H., & Reinherz, E. L. (2004). Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics, 56(6), 405–419. https://doi.org/10.1007/S00251-004-0709-7

Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M. R., & Ghasemi, Y. (2017). Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Molecular Biosystems, 13(4), 699–713. https://doi.org/10.1039/c6mb00772d

Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. https://doi.org/10.1186/1471-2105-8-424

Reynisson, B., Lundegaard, C., & Peters, B. (2020). Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of Proteome Research, 19(6), 2304–2315. https://doi.org/10.1021/acs.jproteome.9b00874

Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics, 65(1), 40–48. https://doi.org/10.1002/prot.21078

Erik, J., Larsen, M. V., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. BMC Bioinformatics, 2(1), 2. https://doi.org/10.1186/1745-7580-2-2

Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4

Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server), W72–W76. https://doi.org/10.1093/nar/gki396

Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2 - A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5

Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server), W202–W209. https://doi.org/10.1093/nar/gkl343

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., ... & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75

MacCarthy, E. A., Zhang, C., Zhang, Y., & KC, D. B. (2022). GPU-I-TASSER: A GPU accelerated I-TASSER protein structure prediction tool. Bioinformatics, 38(6), 1754–1755. https://doi.org/10.1093/bioinformatics/btab871

Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2012). PROCHECK: Validation of protein-structure coordinates. In International Tables for Crystallography (Vol. F, Ch. 21.4, pp. 684–687). https://doi.org/10.1107/97809553602060000882

Razali, S. A., Sarah Diana, P., Shamsir, M. S., Mahadi, N. M., & Mohd Illias, R. (2016). Substrate and cofactor binding interaction studies of galactitol-1-phosphate 5-dehydrogenase from Peptoclostridium difficile. J Teknol, 78(6), 199–210. https://doi.org/10.11113/jt.v78.7598

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563

Koukos, P. I., Kastritis, P. L., & Tsoumanis, A. (2020). An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45. Proteins: Structure, Function, and Bioinformatics, 88(8), 1029–1036. https://doi.org/10.1002/prot.25869

Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289

Agrawal, R., Punarva, H. B., Heda, G. O., Vishesh, Y. M., & Karunakar, P. (2023). VinaLigGen: A method to generate LigPlots and retrieval of hydrogen and hydrophobic interactions from protein-ligand complexes. Journal of Biomolecular Structure and Dynamics, 1–4. https://doi.org/10.1080/07391102.2023.2266524

Páll, S., Hess, B., & Lindahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. Journal of Chemical Physics, 153(13). https://doi.org/10.1063/5.0018516

Azemin, W.-A., Ishak, N. F., Saedin, M. A. A., Shamsir, M. S., & Razali, S. A. (2023). Molecular docking and simulation studies of chloroquine, rimantadine and CAP-1 as potential repurposed antivirals for decapod iridescent virus 1 (DIV1). Fish and Shellfish Immunology Reports, 5, 100120. https://doi.org/10.1016/j.fsirep.2023.100120

Goddard, T. D., Huang, C. C., & Ferrin, T. E. (2017). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science. https://doi.org/10.1002/pro.3235

Razali, S. A., & Shamsir, M. S. (2020). Characterisation of a catalytic triad and reaction selectivity in the dual mechanism of the catalyse hydride transfer in xylitol phosphate dehydrogenase. Journal of Molecular Graphics and Modelling, 97, 107548. https://doi.org/10.1016/j.jmgm.2020.107548

Hazeri, M., Ibrahim, M. S., & Ismail, M. (2017). Molecular characterisation of Grouper Iridovirus isolates from Peninsular Malaysia. Journal of Veterinary Malaysia, 29(1), 1–6. http://psasir.upm.edu.my/56837/1/JVM-2017-Dr-Hassan.pdf

Draganova, E. B., Valentin, J., & Heldwein, E. E. (2021). The ins and outs of herpesviral capsids: Divergent structures and assembly mechanisms across the three subfamilies. Viruses, 13(10), 1913. https://doi.org/10.3390/v13101913

Xu, S. F., Wang, Y., Zhang, W., & Liu, Y. (2024). Development and immune evaluation of LAMP1 chimeric DNA vaccine against Singapore grouper iridovirus in orange-spotted grouper, Epinephelus coioides. Fish and Shellfish Immunology, 109, 109218. https://doi.org/10.1016/j.fsi.2023.109218

Ni, S. Z., Wang, Y. C., Zhao, J. H., & Zhang, L. (2021). Identification, histopathology, and phylogenetic analysis of an iridovirus from cultivated silver pomfret in Zhejiang Province, East China. Aquaculture, 530, 735619. https://doi.org/10.1016/j.aquaculture.2020.735619

Christiansen, A., Weiel, A., Winkler, A., Schug, A., & Reinstein, J. (2021). The trimeric major capsid protein of Mavirus is stabilized by its interlocked N-termini enabling core flexibility for capsid assembly. Journal of Molecular Biology, 433(7), 166859. https://doi.org/10.1016/j.jmb.2021.166859

Zhao, Z., Lu, X., & Zhang, X. (2023). Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly. Nature Communications, 14(1), 37681. https://doi.org/10.1038/s41467-023-37681-9

Razali, S. A., Shamsir, M. S., Ishak, N. F., Low, C.-F., & Azemin, W.-A. (2023). Riding the wave of innovation: Immunoinformatics in fish disease control. PeerJ, 11, e16419. https://doi.org/10.7717/peerj.16419/supp-1

Rhee, J. H., Khim, K., Puth, S., Choi, Y., & Lee, S. E. (2023). Deimmunization of flagellin adjuvant for clinical application. Current Opinion in Virology, 60, 101330. https://doi.org/10.1016/j.coviro.2023.101330

Mahmoodi, S., Amirzakaria, J. Z., & Ghasemian, A. (2023). In silico design and validation of a novel multi-epitope vaccine candidate against structural proteins of Chikungunya virus using comprehensive immunoinformatics analyses. PLoS ONE, 18(5), e0285177. https://doi.org/10.1371/journal.pone.0285177

Mashhadi, M., Shirazi, A., Sadat, S. M., Haghighat, S., Roohvand, F., & Arashkia, A. (2023). Alum and a TLR7 agonist combined with built-in TLR4 and 5 agonists synergistically enhance immune responses against HPV RG1 epitope. Scientific Reports, 13(1), 1–16. https://doi.org/10.1038/s41598-023-43965-3

Khan, A., Khanzada, M. H., Khan, K., Jalal, K., & Uddin, R. (2023). Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus. Immunologic Research. https://doi.org/10.1007/s12026-023-09415-y

Liu, M., Zhang, Y., Chen, J., Li, X., & Wang, Y. (2020). The inhibitory activities and antiviral mechanism of medicinal plant ingredient quercetin against grouper iridovirus infection. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.586331

Liu, M., Zhang, Y., Chen, J., Li, X., & Wang, Y. (2020). Antiviral abilities of Curcuma kwangsiensis ingredients against grouper iridoviral infection in vitro and in vivo. Aquaculture Research, 51(1), 351–361. https://doi.org/10.1111/are.14382

Razali, S. A., Shamsir, M. S., Ishak, N. F., Low, C. F., & Azemin, W. A. (2023). Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ. https://doi.org/10.7717/peerj.16419

Tan, C., Zhu, F., Pan, P., Wu, A., & Li, C. (2023). Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1112816

Shanmugam, A., Rajoria, S., George, A. L., Mittelman, A., Suriano, R., & Tiwari, R. K. (2012). Synthetic toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030839

Gupta, N., Regar, H., Verma, V. K., Prusty, D., Mishra, A., & Prajapati, V. K. (2020). Receptor-ligand based molecular interaction to discover adjuvant for immune cell TLRs to develop next-generation vaccine. International Journal of Biological Macromolecules, 152, 535–545. https://doi.org/10.1016/j.ijbiomac.2020.02.297

Castrodeza-Sanz, J., Sanz-Muñoz, I., & Eiros, J. M. (2023). Adjuvants for COVID-19 vaccines. Vaccines, 11(5), 902. https://doi.org/10.3390/vaccines11050902

Zhao, T., Wang, X., Zhang, Y., & Zhao, J. (2023). Vaccine adjuvants: Mechanisms and platforms. Nature Reviews Immunology. https://doi.org/10.1038/s41392-023-01557-7

Gries, C. M., Mohan, R. R., Morikis, D., & Lo, D. D. (2019). Crosslinked flagella as a stabilized vaccine adjuvant scaffold. BMC Biotechnology, 19(1), 48. https://doi.org/10.1186/s12896-019-0545-3

Yonekura, K., Maki-Yonekura, S., & Namba, K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424(6949), 643–650. https://doi.org/10.1038/nature01830

Joshi, A., Pathak, D. C., Mannan, M. A., & Kaushik, V. (2021). In-silico designing of epitope-based vaccine against the seven-banded grouper nervous necrosis virus affecting fish species. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1), 1–12. https://doi.org/10.1007/s13721-021-00315-5

Rhee, J. H., Khim, K., Puth, S., Choi, Y., & Lee, S. E. (2023). Deimmunization of flagellin adjuvant for clinical application. Current Opinion in Virology, 60, 101330. https://doi.org/10.1016/j.coviro.2023.101330

Islam, S. I., Mahfuj, S., Islam, M. J., Mou, M. J., & Sanjida, S. (2022). Use of integrated core proteomics, immuno-informatics, and in silico approaches to design a multiepitope vaccine against zoonotic pathogen Edwardsiella tarda. Applied Microbiology, 2(2), 414–437. https://doi.org/10.3390/applmicrobiol2020031

Atapour, A., Vosough, P., Jafari, S., & Sarab, G. A. (2022). A multi-epitope vaccine designed against blood-stage of malaria: An immunoinformatic and structural approach. Scientific Reports, 12(1), 11683. https://doi.org/10.1038/s41598-022-15956-3

Joshi, A., Pathak, D. C., Mannan, M. A., & Kaushik, V. (2021). In-silico designing of epitope-based vaccine against the seven-banded grouper nervous necrosis virus affecting fish species. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1), 37. https://doi.org/10.1007/s13721-021-00315-5

Downloads

Published

27-08-2024