Topology of Edge Contracted Möbius Ladder: Indices and Dimension
DOI:
https://doi.org/10.11113/mjfas.v20n4.3386Keywords:
Metric dimension, topological indices, edge contraction, first Zagreb index, second Zagreb index, first Zagreb Hyper index, second Zagreb Hyper index, Augmented Zagreb index, Randic index, general Randic index, harmonic index.Abstract
Assigning numbers to graphs serves as a fundamental tool in graph theory and enables various analytical, computational, and visualization techniques for studying and understanding graph structures and properties. Edge Contraction is a process that separates edges from the graph while also joining the two previously linked vertices. In this paper, we study metric dimension and degree-based topological indices of Möbius Ladder and edge contracted Möbius Ladder like first Zagreb index, second Zagreb index, first Zagreb Hyper index, second Zagreb Hyper index, Augmented Zagreb index, Randic index, general Randic index, and Harmonic index.
References
Gutman, I. (2013). Degree-based topological indices. Croatica Chemica Acta, 86(4), 351–361.
Ye, D., Qi, Z., & Zhang, H. (2009). On k-resonant fullerene graphs. SIAM Journal on Discrete Mathematics, 23(2), 1023–1044.
Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17–20.
Katritzky, A. R., Jain, R., Lomaka, A., Petrukhin, R., Maran, U., & Karelson, M. (2001). Perspective on the relationship between melting points and chemical structure. Crystal Growth & Design, 1(4), 261–265.
Husin, M. N., Hasni, R., & Imran, M. (2017). More results on computation of topological indices of certain networks. International Journal of Networking and Virtual Organisations, 17(1), 46–63.
Husin, M. N., Hasni, R., & Arif, N. E. (2015). Zagreb polynomial of some nanostar dendrimers. Journal of Computational and Theoretical Nanoscience, 12(11), 4297–4300.
Husin, M. N., Roslan, H., Imran, M., & Kamarulhaili, H. (2015). The edge version of geometric arithmetic index of nanotubes and nanotori. Optoelectronics and Advanced Materials: Rapid Communications, 9(9-10), 1292–1300.
Dobrynin, A. A., Entringer, R., & Gutman, I. (2001). Wiener index of trees: Theory and applications. Acta Applicandae Mathematicae, 66, 211–249.
Gao, W., Husin, M. N., Farahani, M. R., & Imran, M. (2016). On the edge version of atom-bond connectivity and geometric arithmetic indices of nanocones CNC_K[n]. Journal of Computational and Theoretical Nanoscience, 13(10), 6741–6746.
Liu, Y., Rezaei, M., Farahani, M. R., Husin, M. N., & Imran, M. (2017). The omega polynomial and the Cluj-Ilmenau index of an infinite class of the titania nanotubes TiO2(m,n). Journal of Computational and Theoretical Nanoscience, 14(7), 3429–3432.
Modabish, A., Husin, M. N., Alameri, A. Q., Ahmed, H., Alaeiyan, M., Farahani, M. R., & Cancan, M. (2022). Enumeration of spanning trees in a chain of diphenylene graphs. Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 241–251.
Asif, F., Zohaib, Z., Husin, M. N., Cancan, M., Tas, Z., Mehdi, A., & Farahani, M. R. (2022). On Sombor indices of line graph of silicate carbide Si2C3-I[p,q]. Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 301–310.
Gutman, I., & Estrada, E. (1996). Topological indices based on the line graph of the molecular graph. Journal of Chemical Information and Computer Sciences, 36(3), 541–543.
Vijay, J. S., Roy, S., Beromeo, B. C., Husin, M. N., Augustine, T., Gobithaasan, R. U., & Easuraja, M. (2023). Topological properties and entropy calculations of aluminophosphates. Mathematics, 11(11), 2443. https://doi.org/10.3390/math11112443
Imran, M., Khan, A. R., Husin, M. N., Tchier, F., Ghani, M. U., & Hussain, S. (2023). Computation of entropy measures for metal-organic frameworks. Molecules, 28(12), 4726. https://doi.org/10.3390/molecules28124726
Husin, M. N., & Saidi, N. H. A. M. (2024). Investigating Zagreb indices and Zagreb coindices of line graphs implementing subdivision process. AIP Conference Proceedings, 2905(1), 030002. https://doi.org/10.1063/5.0172141
Rouvray, D. H. (1987). The modeling of chemical phenomena using topological indices. Journal of Computational Chemistry, 8(4), 470–480.
Slater, P. J. (1975). Leaves of trees. Congressus Numerantium, 14, 549–559. https://www.jstor.org/stable/40277652
Slater, P. J. (1988). Dominating and reference sets in a graph. Journal of Mathematical Physics and Science, 22, 445–455.
Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191–195. https://www.jstor.org/stable/20022981
Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer Vision, Graphics, and Image Processing, 25(1), 113–121.
Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1), 99–113.
Khuller, S., Raghavachari, B., & Rosenfeld, A. (1994). Localization in graphs. Technical Report. Retrieved from https://www.researchgate.net/publication/223702099
Feng, M., & Wang, K. (2013). On the metric dimension of line graphs. Discrete Applied Mathematics, 161(6), 802–805.
Kelin, D. J., & Yi, E. (2012). A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs. European Journal of Pure and Applied Mathematics, 5, 302–316.
Caceres, J., Harnando, C., Mora, M., Puertes, M. L., Pelayo, I. M., Seara, C., & Wood, D. R. (2007). On the metric dimension of Cartesian products of graphs. SIAM Journal on Discrete Mathematics, 21(2), 423–441.
Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs. Discrete Applied Mathematics, 70(3), 217–229.
Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer Vision, Graphics, and Image Processing, 25(1), 97–106.
Saputro, S. W., Baskoro, E. T., Salman, A. N. M., & Suprijanto, D. (2009). The metric dimension of a complete m-partite graph and its Cartesian product with a path. Journal of Combinatorial Mathematics and Combinatorial Computing, 71, 283–293.
Iswadi, H., Baskoro, E. T., & Simanjuntak, R. (2011). On the metric dimension of corona product of graphs. Far East Journal of Mathematical Sciences, 52(2), 155–170.
Yero, I. G., Kuziak, D., & Rodriguez-Velzquez, J. A. (2011). On the metric dimension of corona product graphs. Computers & Mathematics with Applications, 61(9), 2793–2798.
Gowtham, K. J., & Husin, M. N. (2023). A study of families of bistar and corona product of graph: Reverse topological indices. Malaysian Journal of Mathematical Sciences, 17(4), 575–586.
Buczkowski, P. S., Chartrand, G., Poisson, C., & Zhang, P. (2003). On k-dimension graphs and their bases. Periodica Mathematica Hungarica, 46(1), 9–15.
Caceres, J., Harnando, C., Mora, M., Puertes, M. L., Pelayo, I. M., Seara, C., & Wood, D. R. (2005). On the metric dimension of some families of graphs. Electronic Notes in Discrete Mathematics, 22, 129–133.
Shankukha, B., Sooryanarayana, B., & Harinath, K. S. (2002). Metric dimension of wheels. Far East Journal of Applied Mathematics, 8(3), 217–229.
Saputro, S. W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E. T., Salman, A. N. M., & Baca, M. (2013). The metric dimension of the lexicographic product of graphs. Discrete Mathematics, 313(9), 1045–1051.
Feng, M., & Wang, K. (2013). On the metric dimension and fractional metric dimension of the hierarchical product of graphs. Applied Analysis and Discrete Mathematics, 7(2), 302–313.
Siddiqui, H. M. A., Mazhar, K., Siddiqui, M. K., & Nadeem, M. F. (2024). On fault-tolerant metric dimension of supramolecular networks. Discrete Mathematics, Algorithms and Applications.
Al-Dayel, I., Nadeem, M. F., & Khan, M. A. (2024). Topological analysis of tetracyanobenzene metal–organic framework. Scientific Reports, 14(1), 1789.
Azeem, M., Nadeem, M. F., Khalil, A., & Ahmad, A. (2022). On the bounded partition dimension of some classes of convex polytopes. Journal of Discrete Mathematical Sciences and Cryptography, 25(8), 2535–2548.
Ali, S., Ismail, R., Campena, F. J. H., Karamti, H., & Ghani, M. U. (2023). On rotationally symmetrical planar networks and their local fractional metric dimension. Symmetry, 15(2), 530.
Ali, S., Mahmood, M. K., Tchier, F., & Tawfiq, F. M. O. (2021). Classification of upper bound sequences of local fractional metric dimension of rotationally symmetric hexagonal planar networks. Journal of Mathematics, 2021(1), 6613033.
Alali, A. S., Ali, S., Adnan, M., & Torres, D. F. M. (2023). On sharp bounds of local fractional metric dimension for certain symmetrical algebraic structure graphs. Symmetry, 15(10), 1911.
Ali, S., Falcón, R. M., & Mahmood, M. K. (2021). Local fractional metric dimension of rotationally symmetric planar graphs arisen from planar chorded cycles. arXiv preprint arXiv:2105.07808.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hafsa Saleem, Mohamad Nazri Husin, Shahbaz Ali, Muhammad Shazib Hameed, Zaheer Ahmad
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.