Association between Cervix Intraepithelial Neoplasia (CIN) and High-Risk Human Papillomavirus (HPV) Genotypes in Iraqi Women

Authors

  • Mina M. Allos ᵃDepartment of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq; ᵇDepartment of Applied Sciences, University of Technology, Baghdad, Iraq
  • Hassan M. Naif ᵃDepartment of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq; ; ᶜDepartment of Medical Laboratories Technology, College of Health and Medical Technology, AlShaab University, Baghdad, Iraq https://orcid.org/0000-0002-9849-5819

DOI:

https://doi.org/10.11113/mjfas.v20n3.3382

Keywords:

High-Risk Human Papilloma virus; Genotyping; premalignant cervical lesion; Cervical Cancer; Iraq women

Abstract

Human Papillomavirus (HPV) is an oncogenic virus that primarily causes premalignant and malignant cervical lesions particularly infection with high-risk types of viruses. Cervical cancer (CC) is a common gynecological tumor, ranking second in the female reproductive system tumor, particularly in women from developing countries. The prevalent and genotyping of high-risk HPV among Iraqi women during various stages of cervical lesions and cervical cancer were examined by using a real-time PCR. Results of this work revealed that the prevalence of HPV infection in women suffering from gynecological problem was 43%. The distribution of the high-risk HPV was relatively high for both HR-HPV-16 (44.90%) and HR-HPV-39 (14.29%), with HR-HPV-16 is being the most common. The finding of this study can be used to manage HPV infection and cervical cancer particularly at earlier stages of cervical lesions.  

References

Zou, M., Zhang, Q. (2021). miR-17-5p accelerates cervical cancer cells migration and invasion via the TIMP2/MMPs signaling cascade. Cytotechnology, 73(4), 619-27.

Castro-Oropeza, R., Piña-Sánchez, P. (2022). Epigenetic and transcriptomic regulation landscape in HPV+ cancers: biological and clinical implications. Front Genet., 1494.

Cubie, H. A. (2013). Diseases associated with human papillomavirus infection. Virology, 445(1-2), 21–34.

Tulay, P., Serakinci, N. (2016). The role of human papillomaviruses in cancer progression. J Cancer Metastasis Treat, 2(6), 201.

Ryu, W. S. (2016). Molecular virology of human pathogenic viruses. Academic Press.

Zhang, L., Bi, Q., Deng, H., Xu, J., Chen, J., Zhang, M., et al. (2017). Human papillomavirus infections among women with cervical lesions and cervical cancer in Eastern China: genotype-specific prevalence and attribution. BMC Infect Dis., 17, 1-9.

Wei, L., Gan, Q., Ji, T. (2017). Cervical cancer histology image identification method based on texture and lesion area features. Comput Assist Surg., 22(sup1), 186-99.

Chumduri, C., Gurumurthy, R. K., Berger, H., Koster, S., Brinkmann, V., Klemm, U., et al. (2018). Transition of Wnt signaling microenvironment delineates the squamo-columnar junction and emergence of squamous metaplasia of the cervix. BioRxiv, 443770.

Deng, H., Hillpot, E., Mondal, S., Khurana, K. K., Woodworth, C. D. (2018). HPV16-immortalized cells from human transformation zone and endocervix are more dysplastic than ectocervical cells in organotypic culture. 2018(October), 1-13.

Agustiansyah, P., Sanif, R., Nurmaini, S. (2021). Epidemiology and risk factors for cervical cancer. Biosci Med J Biomed Transl Res., 5(7), 624-31.

Kagabu, M., Nagasawa, T., Sato, C., Fukagawa, Y., Kawamura, H., Tomabechi, H., et al. (2020). Immunotherapy for uterine cervical cancer using checkpoint inhibitors: future directions. Int J Mol Sci., 21(7), 2335.

Omoyeni, O. M., Tsoka-Gwegweni, J. M. (2022). Prevalence of cervical abnormalities among rural women in KwaZulu-Natal, South Africa. Pan Afr Med J., 41(1).

Duru, C. B., Oluoha, R. U., Uwakwe, K. A., Diwe, K. C., Merenu, I. A., Emerole, C. A., et al. (2015). Pattern of PAP smear test results among Nigerian women attending clinics in a teaching hospital. Int J Curr Microbiol App Sci., 4(4), 986-98.

Sharma, G. D., Adhikari, R., Parajuly, S. S., Adhikari, K. G. (2019). Cervical Cancer screening in a tertiary care centre by Pap smear and its clinical correlation. Med J Pokhara Acad Heal Sci., 2(1), 5.

Imelda, F., Nasution, D. L. (2020). Correlations among age, parity, and contraception using with Pap smear results in Medan Sumtera Sumatera. Indian J Public Heal Res Dev., 11(6), 1247-51.

Verma, A., Verma, S., Vashist, S., Attri, S., Singhal, A. (2017). A study on cervical cancer screening in symptomatic women using Pap smear in a tertiary care hospital in rural area of Himachal Pradesh, India. Middle East Fertil Soc J., 22(1), 39-42.

Misgina, K. H., Belay, H. S., Abraha, T. H. (2017). Prevalence of precancerous cervical lesion and associated factors among women in North Ethiopia. J Public Heal Epidemiol., 9(3), 46-50.

Kassa, R. T. (2018). Risk factors associated with precancerous cervical lesion among women screened at Marie Stops Ethiopia, Adama town, Ethiopia 2017: A case control study. BMC Res Notes. 11(1), 1-5.

Tarney, C. M., Han, J. (2014). Postcoital bleeding: A review on etiology, diagnosis, and management. Obstet Gynecol Int.

Anorlu, R. I., Abdul-Kareem, F. B., Abudu, O. O., Oyekan, T. O. (2003). Cervical cytology in an urban population in Lagos, Nigeria. J Obstet Gynaecol (Lahore), 23(3), 285-8.

Nagelhout, G., Ebisch, R. M., Van Der Hel, O., Meerkerk, G. J., Magnée, T., De Bruijn, T., et al. (2021). Is smoking an independent risk factor for developing cervical intra-epithelial neoplasia and cervical cancer? A systematic review and meta-analysis. Expert Rev Anticancer Ther., 21(7), 781-94.

Padmini, C. P., Indira, N., Chaitra, R., Das, P., Girish, B. C., Nanda, K. M., et al. (2015). Cytological and colposcopic evaluation of unhealthy cervix. J Evid Med Heal., 2, 6920-7.

Jihad, N. A., Naif, H. M., Sabri, E. H. (2020). Prevalence of high risk human papilloma virus among Iraqi women with abnormal cervical cytology. Gene Reports, 21, 100871.

Hasan, M. Y. A., Al Hashimi, B. A., Al Niyazee, A. A., Al Ameen, M. I. (2020). Prevalence of abnormal Pap smears among sample of Iraqi women attending Al Elweiya Cervical Screening Unit in Baghdad. J Cardiovasc Dis Res., 11(2), 120-4.

Yousif, M. G., Al-Amran, F. G., Sadeq, A. M., Yousif, N. G. (2023). Prevalence and associated factors of human papillomavirus infection among Iraqi Women. arXiv Prepr arXiv230714806.

Adhikari, I., Eriksson, T., Luostarinen, T., Apter, D., Lehtinen, M. (2019). Is the risk of cervical atypia associated with the interval between menarche and the start of sexual activity? A population-based cohort study. BMJ Open, 9(9), e030091.

Yu, H., Yi, J., Dou, Y. L., Chen, Y., Kong, L. J., Wu, J. (2021). Prevalence and genotype distribution of human papillomavirus among healthy females in Beijing, China, 2016-2019. Infect Drug Resist., 14, 4173-82.

Hou, Y. P., Fan, C., Jiang, Q. Q., Wu, L., Luo, Y. (2023). Prevalence and genotype distribution of human papillomavirus in 92,932 cases in Shanghai, China. Future Virol.

Sabah, T. (2018). Expression level of miRNA 744, Bcl- 2, Caspase-3 apoptosis regulator genes and human papilloma virus-HPV in cervical abnormalities.Thesis. University of Baghdad.

Daniel, S., Mohammed, A. S., Ibrahim, N., Hussein, N. R., Balatay, A. A., Naqid, I. A., et al. (2022). Human papillomavirus (HPV) genotype prevalence and impact of COVID-19 on the HPV prevention program in Duhok city. Dialogues Heal., 1, 100055.

Liao, G., Jiang, X., She, B., Tang, H., Wang, Z., Zhou, H., et al. (2020). Multi-infection patterns and co-infection preference of 27 human papillomavirus types among 137,943 gynecological outpatients across China. Front Oncol., 10, 449.

Muñoz, N., Bosch, F. X., De Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K. V., et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med., 348(6), 518-27.

Brotherton, J. M. L., Tabrizi, S. N., Phillips, S., Pyman, J., Cornall, A. M., Lambie, N., et al. (2017). Looking beyond human papillomavirus (HPV) genotype 16 and 18: defining HPV genotype distribution in cervical cancers in Australia prior to vaccination. Int J cancer. 141(8), 1576-84.

So, K. A., Lee, I. H., Lee, K. H., Hong, S. R., Kim, Y. J., Seo, H. H., et al. (2019). Human papillomavirus genotype-specific risk in cervical carcinogenesis. J Gynecol Oncol., 30(4), e52.

Okoye, J. O., Chukwukelu, C. F., Okekpa, S. I., Ogenyi, S. I., Onyekachi-Umah, I. N., Ngokere, A. A. (2021). Racial disparities associated with the prevalence of vaccine and non-vaccine HPV types and multiple HPV infections between Asia and Africa: A systematic review and meta-analysis. Asian Pacific J cancer Prev APJCP. 22(9), 2729.

Seong, J., Ryou, S., Lee, J., Yoo, M., Hur, S., Choi, B. S., et al. (2021). Enhanced disease progression due to persistent HPV-16/58 infections in Korean women: a systematic review and the Korea HPV cohort study. Virol J., 18, 1–13.

Sigurdsson, K., Taddeo, F. J., Benediktsdottir, K. R., Olafsdottir, K., Sigvaldason, H., Oddsson, K., et al. (2007). HPV genotypes in CIN 2‐3 lesions and cervical cancer: A population‐based study. Int J cancer. 121(12), 2682-7.

Saglam, H., Atalay, F. (2023). Effect of Pap smear cytology, HPV genotyping on the concordance of colposcopy and conization results. J Coll Physicians Surg Pakistan. 33(9), 972-8.

Wang, J., Li, H., Zhang, J., Wang, H., Li, Y., Liu, Z., et al. (2024). Epidemiology and genotypes analysis of human papillomavirus infection in Beijing, China. Virol J., 21(1), 19. Available from: https://doi.org/10.1186/s12985-024-02292-3.

Downloads

Published

26-06-2024

Issue

Section

Article