The Complex of Cr(III) with Ligand of 2,6-Bis(pyrazol-3-yl)pyridine and Anionic Trifluoromethanesulfonate: Synthesis, Characterization and Antibacterial Activity



  • Regina Tutik Padmaningrum Department of Chemistry Education, Yogyakarta State University, Indonesia
  • Tuti Maryuni Department of Chemistry Education, Yogyakarta State University, Indonesia
  • Yunita Yunita Department of Chemistry Education, Yogyakarta State University, Indonesia
  • Endang Widjajanti Laksono Department of Chemistry Education, Yogyakarta State University, Indonesia
  • Heru Pratomo Department of Chemistry Education, Yogyakarta State University, Indonesia
  • Kristian Handoyo Sugiyarto Department of Chemistry Education, Yogyakarta State University, Indonesia



Antibacteria, 2,6-bis(pyrazol-3-yl)pyridine, chromium(III), P-XRD, triflate


The complex containing chromium(III), 2,6-bis(pyrazol-3-yl)pyridine (3-bpp), and CF3SO3 (trifluoromethanesulfonate (triflate)) has been prepared and characterized. The conductance, metal content, and thermogravimetric and differential thermal analysis (TGA-DTA) analysis suggest the complex to be [Cr(3-bpp)2](CF3SO3)3.2H2O. The paramagnetic moment corresponds to the three unpaired electrons being consistent with the electronic configuration of chromium(III). The electronic spectral bands are not well resolved attributed to the spin-allowed transitions of quartet ground state to quartet excited states. The IR spectral data signify the mode of vibrations typical for 3-bpp as well as the triflate. While the images of scanning electron microscope-energy dispersive X-ray (SEM) photographs confirm the crystalline particle size and the energy dispersive X-ray (EDX) signifies the existence of all elemental content. The analysis of powder-X-ray diffraction (powder-XRD) following the Rietica program of Le Bail suggests being a structurally orthorhombic crystal system, and Pbca space group, with Z = 16, R= 4.30, Rwp = 5.14, Rexp = 12.17, R-FBragg = 0.04, and goodness of fitting (GOF) = 0.1783. The complex shows a weak inhibition of bacterial activity against S. aureus and E. coli.


Kusumawardani, C., Kainastiti, F., & Sugiyarto, K. H. (2018). Structural Analysis of Powder Complex of Cu(bipy)3(CF3SO3)2 (H2O)x (x = 0.5, 1). Chiang Mai Journal of Science, 45 (4), 1944-1952.

Sugiyarto, K. H., Kusumawardani, C., & Wulandari, K. E. (2018). Synthesis and structural analysis of powder complex of tris(bipyridine)cobalt(ii) trifluoromethanesulfonate octahydrate, Indonesian Journal of Chemistry, 18 (4), 696-701. DOI: 10.22146/ijc.26833

Sugiyarto, K. H., Marini, D. W., Sutrisno, H., Purwaningsih, D., & Kusumawardani, C. (2023). Synthesis of powdered [Mn(bipy)3](CF3SO3)2·5.5H2O: the physical properties and antibacterial activity. Indonesian Journal of Chemistry, 23 (1), 242 – 250. DOI: 10.22146/ijc.77565

Sugiyarto, K. H. (2019), Spin state transition in iron(II): a review on bis-[(2,6-bis(pyrazol-3-yl)pyridine]iron(II) complex, J. Phys.: Conf. Ser. 1156 012007. DOI:10.1088/1742-6596/1156/1/012007

Singh, B. K., Mishra, P., Prakash, A., & Bhojak, N. (2017). Spectroscopic, electrochemical and biological studies of the metal complexes of the Schiff base derived from pyrrole-2-carbaldehyde and ethylenediamine, Arabic Journal of Chemistry, 10(2), S472-S483.

Uddin, S., Hossain, Md. S., Latif, Md. A., Karim, Md. R., Mohapatra, R. K., & Zahan, Md. K-E. (2019). Antimicrobial activity of Mn complexes incorporating schiff bases: a short review. American Journal of Heterocyclic Chemistry, 5(2), 27-36. DOI: 10.11648/j.ajhc.20190502.12

Ayipo, Y. O., Osunniran, W. A., Badeggi, U. M., Saheed, I. O., Jimoh. A. A., Babamale, H. F., & Olaide, E. O., (2021). Synthesis, characterization and antibacterial study of Co(II) and Cu(II) complexes of mixed ligands of piperaquine and diclofenac. JOTCSA, Journal of the Turkish Chemical Society Chemistry, 8 (2):633–50. 10.18596/jotcsa. 898523S

Beyene, B. B., & Wassie, G. A. (2020). Antibacterial activity of Cu(II) and Co(II) porphyrins: role of ligand modification. BMC Chemistry 14, 51:1-8

Sondavid, N., Shweta, B., Bryan, W., Joung, C., Naresh, T., & Jun, K. H. (2020). Cobalt(II) benzazole derivative complexes: synthesis, characterization, antibacterial and synergistic activity. ChemistrySelect, 5, 3471-3476. DOI:10.1002/slct.202000222

Sugiyarto, K. H., Onggo, D., Hiroki Akutsu, H., Varimalla Raghavendra Reddy, V. R., Hari Sutrisno, H., Nakazawac, Y., & Bhattacharjee, A., 2021, Structural, magnetic and Mössbauer spectroscopic studies of the [Fe(3-bpp)2](CF3COO)2 complex: role of crystal packing leading to an incomplete Fe(II) high spin ⇋ low spin transition, CrystEngComm, 23, 2854- 2861. DOI: 10.1039/d0ce01687j

Lin, Y-i & Lang Jr., S. A. (1977). Novel two step synthesis of pyrazoles and isoxazoles from aryl methyl ketones. Journal of Heterocyclic Chemistry, 14 (2), 345–347. DOI:10.1002/jhet.5570140240

Bain, G. A., & Berry, J. F. (2008). Diamagnetic Corrections and Pascal’s Constants. Journal of Chemical Education, 85(4): 532-536. DOI:10.1021/ed085p532

Dalal, M. A. (2017). Textbook of Inorganic Chemistry-Volume 1 (First Edition). CHAPTER 9. Magnetic Properties of Transition Metal Complexes. India: Dalal Institute, pp.342-386

Pathshala (2021). Inorganic Chemistry-II: Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes. [accessed 15 December 2021]

LibreTextsTM (2020). Magnetism. [accessed 15 December 2021]

Lancashire, R. J. LibreTextsTM (2020). Magnetic Moments of Transition Metals. [accessed 15 December 2021]

Kani, I., Atlier, Ö., & Güven, K. (2016). Mn(II) complexes with bipyridine, phenanthroline and benzoic acid:Biological and catalase-like activity. Journal of Chemical Sciences, 128 (4), 523–536. DOI: 10.1007/s12039-016-1050-z

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2), 71–79.

Buchen , T., Gütlich, P., Sugiyarto, K. H., & H. A. Goodwin, H. A. (1996), High-spin → low-spin relaxation in [Fe(bpp)2](CF3SO3)2·H2O after LEISST and thermal spin-trapping-dynamics of spin transition versus dynamics of phase transition. Chemistry: A European Journal. 2 (9), 1134-1138.

Sugiyarto, K. H., Weitzner, K., Craig, D. C., & Goodwin, H. A. (1997). Structural, magnetic and Mössbauer studies of bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) triflate and its hydrates. Australian Journal of Chemistry, 50(9), 869-873. DOI:10.1071/c96206

Paswan, S., Anjum, A., Singh, A. P., & Dubey, R. K. (2019). Synthesis and Spectroscopic Characterization of Lanthanide Complexes Derived from 9,10-Phenanthrenequinone And Schiff Base Ligands Containing N, O Donor Atoms. Indian Journal of Chemistry, 58A(4), 446-453

Aranha, P. E., dos Santos, M. P., Romera, S., & Dockal, E. R. (2007). Synthesis, characterization, and spectroscopic studies of tetradentate Schiff base chromium(III) complexes. Polyhedron, 26 (7), 1373–1382. DOI:10.1016/j.poly.2006.11.005

Mahmoud, M. A., Zaitone, S. A., Ammar, A. M., & Sallam, S. A. (2016). Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases. Journal of Molecular Structure, 1108, 60–70. DOI: 10.1016/j.molstruc.2015.11.055

Sulekh, C., & Poonam, P. (2014), Chromium(lll) complexes: synthesis, spectral characterization and microbial studies, Journal of Chemical and Pharmaceutical Research, 2014, 6 (6):44-54

Sinha, N., Jiménez, J-M., Pfund, B., Prescimone, A., Piguet, C., & Wenger, O. S. (2021). A near‐infrared‐II emissive chromium(III) complex. Angewandte Chemie International Edition, 60, 23722–23728. DOI:10.1002/anie.202106398

Abebe, A., Kendie, M., & Tigineh, G.T. (2022). Mono-and Binuclear Cobalt(II) Mixed Ligand Complexes of 2,2’-Bipyridine and Ethylenediamine: Synthesis, Characterization and Biological Application. Biointerface Research in Applied Chemistry, 12, 1962-1973.

Shad, H. A., Thebo, K. H., Ibupoto, Z. H., Malik, M. A., O’Brien, P., & Raftery, J. (2011). Synthesis, characterization, and crystal structure of a copper(II) complex of 1,10-phenanthroline and succinate, Journal of Coordination Chemistry, 64(13), 2353-2360. DOI: 10.1080/00958972.2011.595789

Kumar, S. P., Suresh, R., Giribabu, K., Manigandan, R., Munusamy, S., Muthamizh, S., & Narayanan, V. (2014). Microwave synthesis of Tris-(1,10-phenanthroline)Manganese(II) complex and its electrochemical sensing property of catechol. International Journal of ChemTech Research, 6 (6), 3280-3283

Ma, X., Jing, J., Yu, J., Wang, J., Zhu, H., & Hu, Z. (2021). Synthesis and Characterization of a Novel Apple Pectin–Fe(III) Complex. ACS Omega, 6 (2), 1391–1399. DOI:10.1021/acsomega.0c05029

Pervaiz, M., Riaz, A., Munir, A., Saeed, Z., Hussain, S., Rashid, A., & Adnan, A. (2019). Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. Journal of Molecular Structure, 1202(10):127284. DOI:10.1016/j.molstruc.2019.127284

Rice, C. A., Borho, N., & Suhm, M. A. (2005). Dimerization of Pyrazole in Slit Jet Expansions. Zeitschrift für Physikalische Chemie, 219(3-2005), 379–388. doi:10.1524/zpch.219.3.379.59183)

Rastegarnia, S., Pordel, M., & Allameh, S. (2020). Synthesis, characterization, quantum-chemical investigation and antibacterial studies of new fluorescent Cr(III) complexes. Arabian Journal of Chemistry. 13, 3903-3909. DOI:10.1016/J.ARABJC.2019.03.001

Gamez, P., Steensma, R. H., Driessen, W. L., & Reedijk, J. (2002). Copper(II) compounds of the planar-tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine. Inorganica Chimica Acta, 333 (1), 51–56. DOI:10.1016/s0020-1693(02)00754-5

Constable, E. C., Housecroft, C. E., Neuburger, M., Schönle, J., & Zampese, J. A. (2014). The surprising lability of bis(2,2′:6′,2′′-terpyridine)chromium(III) complexes. Dalton Trans., 43 (19), 7227–7235

Davis, W. W., & Stout, T. R. (1971). Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Applied Microbiology, 22(4), 659-65. DOI: 10.1128/am.22.4.659-665.1971. PMID: 5002143; PMCID: PMC376382.