Hydro-Geochemical Assessment of Groundwater Quality Of Muda River Basin, Kedah Malaysia
DOI:
https://doi.org/10.11113/mjfas.v21n1.3368Keywords:
Groundwater, hydrochemical assessment, Muda river basin.Abstract
The continuous development in the urbanisation, industrial, and agricultural sectors, coupled with an increase in the population of a given area, impacts the quality and supply of surface water. Groundwater serve as a viable alternative to mitigate these challenges. However, ensuring the safety and sustainability of groundwater necessitates comprehensive quality monitoring. This study employs statistical techniques and conventional plotting methods to evaluate the groundwater quality, physical properties, and chemical composition derived from 55 monitoring wells across the Muda River Basin Laboratory analyses reveal that the groundwater in the Muda River Basin exhibits alkaline characteristics, with electrical conductivity values ranging from 0 to 1050 µS/cm. The hydrogeochemical profile is primarily influenced by silicate and carbonate weathering processes, driven by the region's consistently humid and hot climatic conditions. Principal Component Analysis (PCA), accounting for 80.4% of the dataset's variance, identifies ion exchange, soil mineralization, silicate weathering, and carbonate dissolution as the dominant processes shaping groundwater chemistry. The study also determines the major ionic composition of groundwater in the following order: HCO₃⁻ > Ca²⁺ > Na⁺ > Cl⁻ > SO₄²⁻ > Mg²⁺ > NO₃⁻ > K⁺. The concentrations of these ions conform to the World Health Organization (WHO) standards for drinking water quality. The findings demonstrate that integrating multivariate statistical methods, conventional hydrochemical plots, and geochemical modeling is instrumental in elucidating the factors governing groundwater quality.
References
Connor, R. (2015). The United Nations world water development report, 2015: Water for sustainable world (Vol. 1). UNESCO Publishing.
Isa, N. M., Aris, A. Z., & Sulaiman, W. N. A. W. (2012). Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Science of the Total Environment, 438, 414–425.
Amiri, V., Sohrabi, N., & Dadgar, M. A. (2015). Evaluation of groundwater chemistry and its suitability for drinking and agricultural use in Lenjanat.
Polemio, M., Dragone, V., & Limoni, P. P. (2006). Salt contamination in Apulian aquifer: Spatial and time trend. In Proceedings of 1st SWIM-SWICA (19th Saltwater Intrusion).
Giridharan, L., Venugopal, T., & Jayaprakash, M. (2008). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River.
Reghunath, R., Murthy, T. R. S., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36, 2437–2442.
Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater: A case study of Ain Azel plain (Algeria). Geoderma, 159, 390–398.
Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71.
Yidana, S. M., & Yidana, A. (2010). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59, 1461–1473.
Singh, C. K., Kumari, R., Singh, R. P., Shashtri, S., Kamal, V., & Mukherjee, S. (2011). Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bulletin of Environmental Contamination and Toxicology, 86, 152–158.
Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology, 4, 80–110.
Singh, C. K., Shashtri, S., Kumari, R., & Mukherjee, S. (2012). Chemometric analysis to infer hydro-geochemical processes in a semi-arid region of India. Arabian Journal of Geosciences, 1–18.
Yidana, S. M., Ophori, D., & Yakubo, B. B. (2008). Hydrochemical evaluation of the Voltaian system—The Afram Plains area, Ghana. Journal of Environmental Management, 88, 697–707.
Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques, and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29, 2073–2089.
Zakariah, M. N. A., Roslan, N., Sulaiman, N., Lee, S. C. H., Hamzah, U., & Noh, K. A. M.; Lestari, W. (2021). Gravity analysis for subsurface characterization and depth estimation of Muda River Basin, Kedah, Peninsular Malaysia. Applied Sciences, 11, 6363. https://doi.org/10.3390/app11146363
Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi-criteria decision analysis as a spatial prediction tool: A case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440–441, 75–89. https://doi.org/10.1016/j.jhydrol.2012.03.028
Jamil, H. H., Hassan, W. F. W., & Tan, M. M. (2004). Pengaruh jenis batuan sekitar terhadap taburan Pb dalam sedimen muara Sungai Merbok, Kedah. Bulletin of the Geological Society of Malaysia, 48, 7–11.
Burton, C. K. (1967). The Mahang formation: A mid-Paleozoic euxinic facies from Malaya, with notes on its conditions of deposition and palaeogeography. Geologie en Mijnbouw, 46, 167–187.
Harun, Z., Jasin, B., Mohsin, N., & Azami. (2009). A thrust in the Semanggol formation, Kuala Ketil, Kedah. Bulletin of the Geological Society of Malaysia, 55, 61–66.
Foo, K. Y. (1990). Geology and mineral resources of the Taiping-Kuala Kangsar area, Perak Darul Ridzuan. Geological Survey Headquarters.
Sajid, Z., Ismail, M. S., Zakariah, M. N. A., Tsegab, H., Vintaned, J. A. G., Hanif, T., & Ahmed, N. (2020). Impact of paleosalinity, paleoredox, paleoproductivity/preservation on the organic matter enrichment in black shales from Triassic turbidites of Semanggol basin, Peninsular Malaysia. Minerals, 10, 915.
Lee, C. P., Leman, M. S., Hassan, K., Nasib, B. M., & Karim, R. (2004). Stratigraphic Lexicon of Malaysia. Geological Society of Malaysia.
Koike, T. (1982). Triassic conodonts from Kedah and Pahang, Malaysia. Geological Palaeontological Southeast Asia, 12, 91–113.
Metcalfe, I. (1981). Permian and early Triassic conodonts from northwest Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 14, 119–126.
Koike, T. (1982). Triassic conodont biostratigraphy in Kedah, West Malaysia. Geological Palaeontological Southeast Asia, 23, 9–51.
Metcalfe, I. (1990). Lower and middle Triassic conodonts from the Jerus Limestone, Pahang, Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 4, 141–146.
Metcalfe, I. (1992). Upper Triassic conodonts from the Kodiang Limestone, Kedah, Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 7, 131–138.
APHA (American Public Health Association). (1995). Standard methods for the examination of water and wastewater (19th ed.). American Public Health Association.
Edmond, J. M., Palmer, M. R., Measures, C. I., Grant, B., & Stallard, R. F. (1995). The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochimica et Cosmochimica Acta, 59, 3301–3325.
Huh, Y., Tsoi, M., Zaitsev, A., & Edmond, J. M. (1998). The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica et Cosmochimica Acta, 62, 1657–1676.
Kumar, A., & Singh, C. K. (2015). Characterisation of hydrogeochemical processes and fluoride enrichment in groundwater of south-western Punjab. Water Quality Exposure Health, 1–15.
Cattell, R. B., & Jaspers, J. (1967). A general plasmode (no. 30-10-5-2) for factor analytic exercises and research. Multivariate Behavioral Research Monographs, 67, 1–212.
Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.
Rina, K., Datta, P. S., Singh, C. K., & Mukherjee, S. (2012). Characterisation and evaluation of processes governing the groundwater quality in parts of the Sabarmati basin, Gujarat using hydrochemistry integrated with GIS. Hydrological Processes, 26, 1538–1551.
Yakubo, B. B., Yidana, S. M., & Nti, E. (2009). Hydrochemical analysis of groundwater using multivariate statistical methods: The Volta region, Ghana. KSCE Journal of Civil Engineering, 13, 55–63.
Alaya, M. B., Saidi, S., Zemni, T., & Zargouni, F. (2013). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Sciences, 71, 3387–3421.
Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428. https://doi.org/10.2475/ajs.287.5.401
Shanyengana, E. S., Seely, M. K., & Sanderson, R. D. (2004). Major-ion chemistry and groundwater salinisation in ephemeral floodplains in some arid regions of Namibia. Journal of Arid Environments, 57, 211–223.
Narany, T. S., Aris, A. Z., Sefie, A., & Keesstra, S. (2017). Detecting and predicting the impact of land use changes on groundwater quality: A case study in Northern Kelantan, Malaysia. Science of the Total Environment, 599, 844–853.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Noor Amin Zakariah, Norsyafina Roslan, Norasiah Sulaiman, Muhammad Amzar Aznan, Bilal Al Farishi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.